Here, four processes, gasification, pyrolysis, fermentation, and depolymerization, for producing biofuel from Arundo donax were successively subjected to technical analysis, LCA, TEA, and comprehensive decision-making evaluation. Sustainable aviation fuels produced from Arundo donax have good emission reduction effects. After considering soil carbon sequestration (SCS), all the process emission reduction effects are significantly improved. Gasification became carbon-negative, reducing emissions by 102.63%. If the by-product of pyrolysis, biochar, is used as a carbon sequestration product, the emission reduction effect can reach 198.02%. Biofuels made from Arundo donax generally require more water than traditional aviation fuels. However, the pyrolysis process has a significantly smaller water footprint (WF). In terms of economic benefits, targeting an annual production of 30,000 tons of jet fuel and other products, the results show that pyrolysis has better economics with the largest net present value (NPV) of 2841.49 million yuan, and the internal rate of return (IRR) is 36.22%, followed by depolymerization. Subsequently, using a vector-based algorithm coupled with multicriteria decision-making approaches under uncertainty conditions, it was found that pyrolysis has the best sustainability performance, mainly due to the lowest WF and higher technology maturity and policy support, while depolymerization has more balanced attribute performance and the best relative sustainability performance, indicating that China should focus first on developing pyrolysis and depolymerization technologies.