Bridging Artificial Intelligence and Railway Cybersecurity: A Comprehensive Anomaly Detection Review

被引:0
|
作者
Qi, Jingwen [1 ]
Wang, Jian [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Sch Automat & Intelligence, Beijing, Peoples R China
[2] Beijing Jiaotong Univ, Beijing Engn Res Ctr EMC & GNSS Technol Rail Trans, Beijing, Peoples R China
关键词
cybersecurity; rail; transportation systems resilience; artificial intelligence; anomaly detection; INTRUSION-DETECTION-SYSTEM; NEURAL-NETWORK; CLASSIFICATION; ATTACKS; IMAGES; CNN;
D O I
10.1177/03611981241302335
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Recently, the techniques of industrial control systems (ICS) have developed rapidly, which leads to new cyber threats in this field. The railway system, as a special ICS, is also facing more and more challenges in the intrusion detection and risk evaluation fields. However, compared with other ICS, the intrusion detection and defense methods for railway systems are lagging behind. This paper is a comprehensive review of the application of artificial intelligence (AI) in the railway industry, with a particular focus on cybersecurity. We examine existing anomaly detection methods based on AI and their implementation in ICS and railway operations. We found that machine learning and deep learning algorithms are effective in processing large amounts of network traffic data, modeling normal system behavior, and detecting anomalies. Different AI-based anomaly detection algorithms each have their own strengths and weaknesses, and they hold significant potential for enhancing the cybersecurity of railway systems. While the field of AI in the railway industry is still in its early stages, several case studies demonstrate that AI technologies have already shown considerable promise in safeguarding railway networks. However, there are still numerous challenges in practical applications, such as improving accuracy, generalizability, and robustness. Addressing these challenges will be critical for realizing the full potential of AI in railway cybersecurity and ensuring the safety and efficiency of railway operations in the future. Our work serves as a guide for future explorations, aiming to contribute to the broader discourse of AI applications in industrial cybersecurity.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [22] Explainable artificial intelligence: a comprehensive review
    Dang Minh
    H. Xiang Wang
    Y. Fen Li
    Tan N. Nguyen
    Artificial Intelligence Review, 2022, 55 : 3503 - 3568
  • [23] Artificial Intelligence in Biomaterials: A Comprehensive Review
    Gokcekuyu, Yasemin
    Ekinci, Fatih
    Guzel, Mehmet Serdar
    Acici, Koray
    Aydin, Sahin
    Asuroglu, Tunc
    APPLIED SCIENCES-BASEL, 2024, 14 (15):
  • [24] CyberAIBot: Artificial Intelligence in an intrusion detection system for CyberSecurity in the IoT
    Serrano, Will
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
  • [25] Explainable Artificial Intelligence for Cybersecurity
    Sharma, Deepak Kumar
    Mishra, Jahanavi
    Singh, Aeshit
    Govil, Raghav
    Srivastava, Gautam
    Lin, Jerry Chun-Wei
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [26] Artificial Intelligence Applications in Cybersecurity
    Kabbas, Azzah
    Alharthi, Atheer
    Munshi, Asmaa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (02): : 120 - 124
  • [27] Artificial intelligence for cybersecurity: Literature review and future research directions
    Kaur, Ramanpreet
    Gabrijelcic, Dusan
    Klobucar, Tomaz
    INFORMATION FUSION, 2023, 97
  • [28] A review of digital twins and their application in cybersecurity based on artificial intelligence
    Homaei, Mohammadhossein
    Mogollon-Gutierrez, Oscar
    Sancho, Jose Carlos
    Avila, Mar
    Caro, Andres
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [29] Economics of Artificial Intelligence in Cybersecurity
    Kshetri, Nir
    IT PROFESSIONAL, 2021, 23 (05) : 73 - 77
  • [30] Artificial Intelligence In Cybersecurity Applications
    Sharko, Anni Dasho
    Sharko, Genci
    Qose, Silvana
    28TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, INES 2024, 2024, : 175 - 180