Enhanced Cognitive Distortions Detection and Classification Through Data Augmentation Techniques

被引:0
|
作者
Rasmy, Mohamad [1 ]
Sabty, Caroline [2 ]
Sakr, Nourhan [3 ]
El Bolock, Alia [3 ]
机构
[1] Ain Shams Univ, Cairo, Egypt
[2] German Int Univ, Cairo, Egypt
[3] Amer Univ Cairo, Cairo, Egypt
关键词
Cognitive Distortions; Data Augmentation; Deep Learning; Natural Language Processing; Text Classification;
D O I
10.1007/978-981-96-0116-5_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cognitive distortions detrimentally affect mental health by distorting reality and influencing emotions and behavior. While the detection and classification of such irrational thinking patterns grow in significance, limited data resources (and thereby limited work) exist for such task. In this study, we are motivated by the work in [5], where a CNN model using BERT embeddings is selected to detect and classify cognitive distortions. We explore various data augmentation techniques, such as Easy Data Augmentation, word embedding substitution, and back-translation to enhance the quality of the training dataset and fine-tune additional embeddings from RoBERTa and GPT-2 to improve the performance of these tasks. Our experimental results demonstrate a significant increase in the F-score by 1.88% for detection and 5.9% for classification. These enhancements increase the potential for building a supportive tool for individuals and mental health professionals.
引用
收藏
页码:134 / 145
页数:12
相关论文
共 50 条
  • [41] Application of Data Mining Techniques for Defect Detection and Classification
    Prakash, B. V. Ajay
    Ashoka, D. V.
    Aradya, V. N. Manjunath
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON FRONTIERS OF INTELLIGENT COMPUTING: THEORY AND APPLICATIONS (FICTA) 2014, VOL 1, 2015, 327 : 387 - 395
  • [42] Data Augmentation for Graph Classification
    Zhou, Jiajun
    Shen, Jie
    Xuan, Qi
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 2341 - 2344
  • [43] Data Augmentation for Traffic Classification
    Wang, Chao
    Finamore, Alessandro
    Michiardi, Pietro
    Gallo, Massimo
    Rossi, Dario
    PASSIVE AND ACTIVE MEASUREMENT, PAM 2024, PT I, 2024, 14537 : 159 - 186
  • [44] Bayesian classification by data augmentation
    Reguzzoni, M
    Sansò, F
    Venuti, G
    Brivio, PA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (20) : 3961 - 3981
  • [45] Classification with Dynamic Data Augmentation
    Xu, Dejiang
    Lee, Mong Li
    Hsu, Wynne
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1434 - 1441
  • [46] Data Augmentation for Plant Classification
    Pawara, Pornntiwa
    Okafor, Emmanuel
    Schomaker, Lambert
    Wiering, Marco
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 615 - 626
  • [47] Advanced Data Augmentation Techniques for Enhanced Fault Diagnosis in Industrial Centrifugal Pumps
    Kim, Dong-Yun
    Kareem, Akeem Bayo
    Domingo, Daryl
    Shin, Baek-Cheon
    Hur, Jang-Wook
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2024, 13 (05)
  • [48] Enhanced Phonocardiogram Classification Performance through Outlier Detection
    Nehary, Ebrahim A.
    Rajan, Sreeraman
    2024 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS, MEMEA 2024, 2024,
  • [49] Anatomy-informed Data Augmentation for Enhanced Prostate Cancer Detection
    Kovacs, Balint
    Netzer, Nils
    Baumgartner, Michael
    Eith, Carolin
    Bounias, Dimitrios
    Meinzer, Clara
    Jaeger, Paul F.
    Zhang, Kevin S.
    Floca, Ralf
    Schrader, Adrian
    Isensee, Fabian
    Gnirs, Regula
    Goertz, Magdalena
    Schuetz, Viktoria
    Stenzinger, Albrecht
    Hohenfellner, Markus
    Schlemmer, Heinz-Peter
    Wolf, Ivo
    Bonekamp, David
    Maier-Hein, Klaus H.
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 114 - 114
  • [50] Anatomy-Informed Data Augmentation for Enhanced Prostate Cancer Detection
    Kovacs, Balint
    Netzer, Nils
    Baumgartner, Michael
    Eith, Carolin
    Bounias, Dimitrios
    Meinzer, Clara
    Jaeger, Paul F.
    Zhang, Kevin S.
    Floca, Ralf
    Schrader, Adrian
    Isensee, Fabian
    Gnirs, Regula
    Goertz, Magdalena
    Schuetz, Viktoria
    Stenzinger, Albrecht
    Hohenfellner, Markus
    Schlemmer, Heinz-Peter
    Wolf, Ivo
    Bonekamp, David
    Maier-Hein, Klaus H.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VII, 2023, 14226 : 531 - 540