Transfer matrix analysis of non-Hermitian Hamiltonians: asymptotic spectra and topological eigenvalues

被引:0
|
作者
Koekenbier, Lars [1 ]
Schulz-Baldes, Hermann [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
关键词
banded Toeplitz matrices; transfer matrices; topological bound states; BLOCK TOEPLITZ MATRICES; BEHAVIOR; LOCALIZATION;
D O I
10.4171/JST/524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Transfer matrix techniques are used to provide a new proof of Widom's results on the asymptotic spectral theory of finite block Toeplitz matrices. Furthermore, a rigorous treatment of the skin effect, spectral outliers, the generalized Brillouin zone and the bulk-boundary correspondence in such systems is given. This covers chiral Hamiltonians with topological eigenvalues close to zero, but no line-gap.
引用
收藏
页码:1563 / 1622
页数:60
相关论文
共 50 条
  • [31] Critical parameters for non-hermitian Hamiltonians
    Fernandez, Francisco M.
    Garcia, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 141 - 151
  • [32] Symmetries and Invariants for Non-Hermitian Hamiltonians
    Simon, Miguel Angel
    Buendia, Alvaro
    Muga, J. G.
    MATHEMATICS, 2018, 6 (07):
  • [33] Homotopy characterization of non-Hermitian Hamiltonians
    Wojcik, Charles C.
    Sun, Xiao-Qi
    Bzdusek, Tomas
    Fan, Shanhui
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [34] Adiabaticity condition for non-Hermitian Hamiltonians
    Ibanez, S.
    Muga, J. G.
    PHYSICAL REVIEW A, 2014, 89 (03):
  • [35] Absence of topological insulator phases in non-Hermitian PT-symmetric Hamiltonians
    Hu, Yi Chen
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2011, 84 (15):
  • [36] S-matrix pole symmetries for non-Hermitian scattering Hamiltonians
    Simon, M. A.
    Buendia, A.
    Kiely, A.
    Mostafazadeh, Ali
    Muga, J. G.
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [37] Transfer matrices, non-Hermitian Hamiltonians and resolvents: some spectral identities
    Molinari, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (42): : 8553 - 8562
  • [38] APPROXIMATE EIGENVALUES AND NON-HERMITIAN OPERATORS
    LANDAU, HJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A679 - A679
  • [39] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):
  • [40] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86