Curve Clustering via Pairwise Directions Estimation

被引:0
|
作者
Lue, Heng-Hui [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung, Taiwan
关键词
Cluster analysis; Curve data; Dimension reduction; Semi-parametric models; Similarity; Visualization; SLICED INVERSE REGRESSION; DIMENSION REDUCTION;
D O I
10.1007/s00357-025-09503-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the cluster analysis of curve response data with multi-dimensional covariates. A novel clustering approach based on dimension reduction to group curves with similar patterns without requiring a prespecified parametric model is introduced. The proposed method can be applied to analyze regularly or irregularly observed curve data. Instead of being driven by cost optimization, the clustering problem is shifted to explore the mean functions and basis patterns in data from the geometric viewpoint. For implementing a data-driven function search, the method of pairwise directions estimation (PDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {PDE}$$\end{document}) (Lue Journal of Statistical Computation and Simulation 89, 776-794 2019) is applied. The benefit of using geometric information from the PDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {PDE}$$\end{document} is highlighted. The proposed method is on the basis of the squared prediction error to achieve optimal cluster membership prediction. Our proposal can not only obtain higher cluster qualities in clustering but also enhance the interpretation of cluster structure. Several simulation examples are conducted, and comparisons are made with nine methods. Applications to two real datasets are also presented for illustration.
引用
收藏
页数:31
相关论文
共 50 条
  • [31] Clustering-Aware Multiple Graph Matching via Decayed Pairwise Matching Composition
    Wang, Tianzhe
    Jiang, Zetian
    Yan, Junchi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1660 - 1667
  • [32] Estimation of the L-Curve via Lanczos Bidiagonalization
    D. Calvetti
    G. H. Golub
    L. Reichel
    BIT Numerical Mathematics, 1999, 39 : 603 - 619
  • [33] Smooth ROC curve estimation via Bernstein polynomials
    Wang, Dongliang
    Cai, Xueya
    PLOS ONE, 2021, 16 (05):
  • [34] Estimation of the L-curve via Lanczos bidiagonalization
    Calvetti, D
    Golub, GH
    Reichel, L
    BIT NUMERICAL MATHEMATICS, 1999, 39 (04) : 603 - 619
  • [35] Very smooth curve estimation via semiparametric penalty
    Machler, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 135 - 138
  • [36] Clustering from Sparse Pairwise Measurements
    Saade, Alaa
    Krzakala, Florent
    Lelarge, Marc
    Zdeborova, Lenka
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 780 - 784
  • [37] Color image quantization by pairwise clustering
    Velho, L
    Gomes, J
    Sobreiro, MVR
    X BRAZILIAN SYMPOSIUM ON COMPUTER GRAPHICS AND IMAGE PROCESSING, PROCEEDINGS, 1997, : 203 - 210
  • [38] Maximum Margin Clustering with Pairwise Constraints
    Hu, Yang
    Wang, Jingdong
    Yu, Nenghai
    Hua, Xian-Sheng
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 253 - +
  • [39] COBRAS: Interactive Clustering with Pairwise Queries
    Van Craenendonck, Toon
    Dumancic, Sebastijan
    Van Wolputte, Elia
    Blockeel, Hendrik
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 353 - 366
  • [40] Pairwise data clustering by deterministic annealing
    Hofmann, T
    Buhmann, JM
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (01) : 1 - 14