Curve Clustering via Pairwise Directions Estimation

被引:0
|
作者
Lue, Heng-Hui [1 ]
机构
[1] Tunghai Univ, Dept Stat, Taichung, Taiwan
关键词
Cluster analysis; Curve data; Dimension reduction; Semi-parametric models; Similarity; Visualization; SLICED INVERSE REGRESSION; DIMENSION REDUCTION;
D O I
10.1007/s00357-025-09503-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the cluster analysis of curve response data with multi-dimensional covariates. A novel clustering approach based on dimension reduction to group curves with similar patterns without requiring a prespecified parametric model is introduced. The proposed method can be applied to analyze regularly or irregularly observed curve data. Instead of being driven by cost optimization, the clustering problem is shifted to explore the mean functions and basis patterns in data from the geometric viewpoint. For implementing a data-driven function search, the method of pairwise directions estimation (PDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {PDE}$$\end{document}) (Lue Journal of Statistical Computation and Simulation 89, 776-794 2019) is applied. The benefit of using geometric information from the PDE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textsf {PDE}$$\end{document} is highlighted. The proposed method is on the basis of the squared prediction error to achieve optimal cluster membership prediction. Our proposal can not only obtain higher cluster qualities in clustering but also enhance the interpretation of cluster structure. Several simulation examples are conducted, and comparisons are made with nine methods. Applications to two real datasets are also presented for illustration.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation
    Lue, Heng-Hui
    Tzeng, ShengLi
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (14) : 2914 - 2933
  • [2] Pairwise directions estimation for multivariate response regression data
    Lue, Heng-Hui
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (05) : 776 - 794
  • [3] Distributed Formation Estimation Via Pairwise Distance Measurements
    Ziegler, Thomas
    Karrer, Marco
    Schmuck, Patrik
    Chli, Margarita
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 3017 - 3024
  • [4] Beyond pairwise clustering
    Agarwal, S
    Lim, J
    Zelnik-Manor, L
    Perona, P
    Kriegman, D
    Belongie, S
    2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol 2, Proceedings, 2005, : 838 - 845
  • [5] Change curve estimation via wavelets
    Wang, YZ
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (441) : 163 - 172
  • [6] Multi-view clustering via pairwise sparse subspace representation
    Yin, Qiyue
    Wu, Shu
    He, Ran
    Wang, Liang
    NEUROCOMPUTING, 2015, 156 : 12 - 21
  • [7] Semi-supervised Clustering via Pairwise Constrained Optimal Graph
    Nie, Feiping
    Zhang, Han
    Wang, Rong
    Li, Xuelong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3160 - 3166
  • [8] A New Nonparametric Pairwise Clustering Algorithm Based on Iterative Estimation of Distance Profiles
    Shlomo Dubnov
    Ran El-Yaniv
    Yoram Gdalyahu
    Elad Schneidman
    Naftali Tishby
    Golan Yona
    Machine Learning, 2002, 47 : 35 - 61
  • [9] A new nonparametric pairwise clustering algorithm based on iterative estimation of distance profiles
    Dubnov, S
    El-Yaniv, R
    Gdalyahu, Y
    Schneidman, E
    Tishby, N
    Yona, G
    MACHINE LEARNING, 2002, 47 (01) : 35 - 61
  • [10] Clustering via nonparametric density estimation
    Adelchi Azzalini
    Nicola Torelli
    Statistics and Computing, 2007, 17 : 71 - 80