Constructing synthetic organosulfur additive for high voltage lithium-ion batteries

被引:0
|
作者
Su, Chi-Cheung [1 ]
He, Meinan [2 ]
Dato, Michael A. [1 ]
Liu, Ziqi [3 ]
Hafiz, Hasnain [2 ]
Lopez, Jeffrey [3 ]
Amine, Khalil [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[2] Gen Motors Global Res & Dev Ctr, Warren, MI 48090 USA
[3] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
关键词
High voltage lithium-ion batteries; Synthetic electrolyte additive; Organosulfur electrolyte; Functionality selection principle; Synergistic effect; ELECTROLYTES; PERFORMANCE; OXYGEN; CELLS;
D O I
10.1016/j.nanoen.2025.110807
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite its high anodic stability, common organosulfur solvents such as ethyl methyl sulfone and sulfolane typically exhibit poor solid-electrolyte interphase (SEI) formation capability. To address this, the fluorinated organic sulfate 4-(trifluoromethyl)-1,3,2-dioxathiolane 2,2-dioxide (TFDTD) was developed as an effective additive for tailoring organosulfur-based electrolytes in lithium-ion batteries. This development was guided by the functionality selection principle and careful evaluation of feasibility in organic synthesis. TFDTD can be readily synthesized through the reaction between trifluoropropylene glycol and sulfuryl chloride. The ring structure of the organic sulfate enables the formation of a stable SEI on the anode, while the fluorination of the sulfate not only enhances its chemical stability and oxidation potential, but also its effectiveness to protect the anode by increasing its reduction potential, rendering it preferentially reduced on the anode surface before the decomposition of other electrolyte components. Introducing TFDTD facilitates the generation of a robust solidelectrolyte interphase on the graphite anode, significantly enhancing cell performance. Moreover, coupling the use of TFDTD with vinylene carbonate provides further protection on the cathode surface, enabling exceptionally stable, high-voltage, long-term cycling of Gr||NMC full cells.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Ethyl 2-butene phosphite as a film-forming additive for high voltage lithium-ion batteries
    Liu, Jianguo
    Cao, Jinghang
    Li, Baohui
    Xing, Xiao
    Cui, Gan
    JOURNAL OF POWER SOURCES, 2025, 629
  • [42] High-voltage positive electrode materials for lithium-ion batteries
    Li, Wangda
    Song, Bohang
    Manthiram, Arumugam
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (10) : 3006 - 3059
  • [43] Challenges and Approaches for High-Voltage Spinel Lithium-Ion Batteries
    Kim, Jung-Hyun
    Pieczonka, Nicholas P. W.
    Yang, Li
    CHEMPHYSCHEM, 2014, 15 (10) : 1940 - 1954
  • [44] Tris(trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNiMnCoO cathode
    Chunfeng Yan
    Ying Xu
    Jianrong Xia
    Cuiran Gong
    Kerong Chen
    Journal of Energy Chemistry , 2016, (04) : 659 - 666
  • [45] High-Voltage Resistant Ionic Liquids for Lithium-Ion Batteries
    Qi, Haojun
    Ren, Yongyuan
    Guo, Siyu
    Wang, Yuyue
    Li, Shujin
    Hu, Yin
    Yan, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) : 591 - 600
  • [46] Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries
    Qian Wu
    Bing Zhang
    Yingying Lu
    Journal of Energy Chemistry, 2022, 74 (11) : 283 - 308
  • [47] Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries
    Wu, Qian
    Zhang, Bing
    Lu, Yingying
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 283 - 308
  • [48] Structured Electrode Additive Manufacturing for Lithium-Ion Batteries
    Park, Soyeon
    Shi, Baohui
    Shang, Yuanyuan
    Deng, Kaiyue
    Fu, Kun
    NANO LETTERS, 2022, 22 (23) : 9462 - 9469
  • [49] Benzotriazole as an electrolyte additive on lithium-ion batteries performance
    Hamenu, Louis
    Madzvamuse, Alfred
    Mohammed, Latifatu
    Lee, Yong Min
    Ko, Jang Myoun
    Bon, Chris Yeajoon
    Kim, Sang Jun
    Cho, Won Il
    Baek, Yong Gu
    Park, Jongwook
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 53 : 241 - 246
  • [50] An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries
    Han, Jung-Gu
    Hwang, Chihyun
    Kim, Su Hwan
    Park, Chanhyun
    Kim, Jonghak
    Jung, Gwan Yeong
    Baek, Kyungeun
    Chae, Sujong
    Kang, Seok Ju
    Cho, Jaephil
    Kwak, Sang Kyu
    Song, Hyun-Kon
    Choi, Nam-Soon
    ADVANCED ENERGY MATERIALS, 2020, 10 (20)