Individual Versus Combined Effects of Warming, Elevated CO2 and Drought on Grassland Water Uptake and Fine Root Traits

被引:0
|
作者
Tissink, Maud [1 ]
Radolinski, Jesse [1 ,2 ]
Reinthaler, David [1 ]
Venier, Sarah [1 ]
Poetsch, Erich M. [3 ]
Schaumberger, Andreas [3 ]
Bahn, Michael [1 ]
机构
[1] Univ Innsbruck, Dept Ecol, Innsbruck, Austria
[2] Univ Maryland, Dept Environm Sci & Technol, College Pk, MD USA
[3] Raumberg Gumpenstein, Agr Res & Educ Ctr AREC, Irdning, Austria
来源
PLANT CELL AND ENVIRONMENT | 2025年 / 48卷 / 03期
基金
奥地利科学基金会;
关键词
global change; grassland water dynamics; root traits; root water uptake; XYLEM SAP FLOW; CLIMATE-CHANGE; PARTITIONING EVAPOTRANSPIRATION; TRANSPIRATION; BIOMASS; CONDUCTANCE; TEMPERATURE; ECOSYSTEMS; NORTHERN; DEFICIT;
D O I
10.1111/pce.15274
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increasing warming, atmospheric CO2 and drought are expected to change the water dynamics of terrestrial ecosystems. Yet, limited knowledge exists about how the interactive effects of these factors will affect grassland water uptake, and whether adaptations in fine root production and traits will alter water uptake capacity. In a managed C3 grassland, we tested the individual and combined effects of warming (+3 degrees C), elevated CO2 (eCO2; +300 ppm) and drought on root water uptake (RWU) as well as on fine root production, trait adaptation, and fine root-to-shoot production ratios, and their relationships with RWU capacity. High temperatures, amplified by warming, exacerbated RWU reductions under drought, with negligible water-sparing effects from eCO2. Drought, both under current and future (warming, eCO2) climatic conditions, shifted RWU towards deeper soil layers. Overall, RWU capacity related positively to fine root production and specific root length (SRL), and negatively to mean root diameters. Warming effects on traits (reduced SRL, increased diameter) and the ratio of fine root-to-shoot production (increased) were offset by eCO2. We conclude that under warmer future conditions, irrespective of shifts in water sourcing, it is particularly hot droughts that will lead to increasingly severe restrictions of grassland water dynamics.
引用
收藏
页码:2083 / 2098
页数:16
相关论文
共 50 条
  • [31] Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem
    Albert, K. R.
    Ro-Poulsen, H.
    Mikkelsen, T. N.
    Michelsen, A.
    van der Linden, L.
    Beier, C.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (12) : 4253 - 4266
  • [32] Elevated CO2 effects on decomposition processes in a grazed grassland
    Allard, V
    Newton, PCD
    Lieffering, M
    Soussana, JF
    Grieu, P
    Matthew, C
    GLOBAL CHANGE BIOLOGY, 2004, 10 (09) : 1553 - 1564
  • [33] The interaction between drought and elevated CO2 in water relations in two grassland species is species-specific
    Miranda-Apodaca, Jon
    Perez-Lopez, Usue
    Lacuesta, Maite
    Mena-Petite, Amaia
    Munoz-Rueda, Alberto
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 220 : 193 - 202
  • [34] Grassland species effects on soil CO2 flux track the effects of elevated CO2 and nitrogen
    Craine, JM
    Wedin, DA
    Reich, PB
    NEW PHYTOLOGIST, 2001, 150 (02) : 425 - 434
  • [35] Effects of Elevated CO2 on Physiological Responses of Tall Fescue to Elevated Temperature, Drought Stress, and the Combined Stresses
    Yu, Jingjin
    Chen, Lihua
    Xu, Ming
    Huang, Bingru
    CROP SCIENCE, 2012, 52 (04) : 1848 - 1858
  • [36] Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna
    Zeppel, Melanie J. B.
    Lewis, James D.
    Medlyn, Belinda
    Barton, Craig V. M.
    Duursma, Remko A.
    Eamus, Derek
    Adams, Mark A.
    Phillips, Nathan
    Ellsworth, David S.
    Forster, Michael A.
    Tissue, David T.
    TREE PHYSIOLOGY, 2011, 31 (09) : 932 - 944
  • [37] Elevated CO2 increases fine root growth and fine root turnover in Pinus ponderosa.
    Tingey, DT
    Phillips, DL
    Johnson, DG
    Johnson, DW
    Weber, JA
    PLANT PHYSIOLOGY, 1997, 114 (03) : 1358 - 1358
  • [38] Effects of elevated CO2 on fine root dynamics in a Mojave Desert community:: a FACE study
    Phillips, DL
    Johnson, MG
    Tingey, DT
    Catricala, CE
    Hoyman, TL
    Nowak, RS
    GLOBAL CHANGE BIOLOGY, 2006, 12 (01) : 61 - 73
  • [39] Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis
    Zhou, Rong
    Yu, Xiaqing
    Wen, Junqin
    Jensen, Nikolaj Bjerring
    dos Santos, Thayna Mendanha
    Wu, Zhen
    Rosenqvist, Eva
    Ottosen, Carl-Otto
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [40] Interactive effects of elevated CO2 concentration and combined heat and drought stress on tomato photosynthesis
    Rong Zhou
    Xiaqing Yu
    Junqin Wen
    Nikolaj Bjerring Jensen
    Thayna Mendanha dos Santos
    Zhen Wu
    Eva Rosenqvist
    Carl-Otto Ottosen
    BMC Plant Biology, 20