Cross-material battery capacity estimation using hybrid-model fusion transfer learning

被引:0
|
作者
Zhao, Jingyuan [1 ]
Qu, Xudong [2 ]
Han, Xuebing [3 ]
Wu, Yuyan [4 ]
Burke, Andrew F. [1 ]
机构
[1] Univ Calif Davis, Inst Transportat Studies, Davis, CA 95616 USA
[2] Hubei Univ Arts & Sci, Hubei Longzhong Lab, Xiangyang 441000, Peoples R China
[3] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[4] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA
关键词
Battery; Health; CNN; Self-attention; Transfer learning; Deep learning; LITHIUM; PREDICTION;
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Evaluating battery health involves navigating the intricate interplay of physical, chemical, and electrochemical processes across multiple scales-a task that becomes even more complex with the introduction of new battery materials. This necessitates substantial development, modeling, and recalibration of boundary conditions. Our study introduces a hybrid fusion model that combines convolutional neural networks (CNNs) with self-attention mechanisms to enhance battery health assessments. In total, three datasets are involved-covering 77 LFP, 20 NMC, and 18 NCA batteries-encompassing over 170,000 cycles across a broad spectrum of battery materials and operational conditions for pre-training the base model and for transfer learning. Our findings reveal that, when transferring aging knowledge from LFP to ternary batteries (NMC and NCA) under diverse chemistries, temperatures, and operational strategies, the model achieved root mean square errors (RMSEs) of 7.47 mAh and 12.4 mAh, mean absolute percentage errors (MAPEs) of 0.67 % and 1.14 %, and coefficients of determination (R2) of 0.922 and 0.918, respectively. These results demonstrate the effectiveness of our hybrid fusion model, which uses deep transfer learning and combines CNNs with self-attention mechanisms to accurately diagnose battery capacity across various types by analyzing short cycle sequences and integrating insights throughout the cell operational history.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Skin Cancer Diagnosis using Deep Learning, Transfer Learning and Hybrid Model
    Prakash, Ravi
    Pandey, Trilok Nath
    Dash, Bibhuti Bhusan
    Patra, Sudhansu Shekhar
    De, Utpal Chandra
    Tripathy, Abinash
    2024 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS, ICICI 2024, 2024, : 90 - 95
  • [22] Li-ion battery capacity prediction using improved temporal fusion transformer model
    Gomez, William
    Wang, Fu-Kwun
    Chou, Jia-Hong
    ENERGY, 2024, 296
  • [23] A Fusion Model for Cross-Subject Stress Level Detection Based on Transfer Learning
    Mozafari, Mohsen
    Goubran, Rafik
    Green, James R.
    2021 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS 2021), 2021,
  • [24] Prediction of electric vehicle battery state of health estimation using a hybrid deep learning mechanism
    Kant, Akshat
    Kumar, Manish
    Sihag, Sathans
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2025,
  • [25] Adaptive Attitude Estimation Using a Hybrid Model-Learning Approach
    Vertzberger, Eran
    Klein, Itzik
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [26] Electric vehicle battery capacity degradation and health estimation using machine-learning techniques: a review
    Das, Kaushik
    Kumar, Roushan
    CLEAN ENERGY, 2023, 7 (06): : 1268 - 1281
  • [27] Lithium-ion battery capacity estimation-A pruned convolutional neural network approach assisted with transfer learning
    Li, Yihuan
    Li, Kang
    Liu, Xuan
    Wang, Yanxia
    Zhang, Li
    APPLIED ENERGY, 2021, 285
  • [28] Small-Sample Battery Capacity Prediction Using a Multi-Feature Transfer Learning Framework
    Lu, Xiaoming
    Yang, Xianbin
    Wang, Xinhong
    Shi, Yu
    Wang, Jing
    Yao, Yiwen
    Gao, Xuefeng
    Xie, Haicheng
    Chen, Siyan
    BATTERIES-BASEL, 2025, 11 (02):
  • [29] On error cross-correlation and fusion algorithm for multi-sensor hybrid multiple model estimation
    Qiao, Xiang-Dong
    Li, Tao
    Yang, Tong
    Li, Hong-Yan
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (04): : 804 - 810
  • [30] Prediction of Li-ion battery capacity degradation considering polarization recovery with a hybrid ensemble learning model
    Tong, Zheming
    Miao, Jiazhi
    Mao, Jiale
    Wang, Zhuoya
    Lu, Yingying
    ENERGY STORAGE MATERIALS, 2022, 50 : 533 - 542