Component Degradation in Lithium-Ion Batteries and Their Sustainability: A Concise Overview

被引:1
|
作者
Mansir, Ibrahim B. [1 ]
Okonkwo, Paul C. [2 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Engn Al kharj, Dept Mech Engn, Al kharj 11942, Saudi Arabia
[2] Dhofar Univ, Coll Engn, Dept Mech & Mechatron Engn, POB 2509, Salalah 211, Oman
关键词
characterization; lithium-ion battery; sustainability; energy storage; electrode; degradation; electrolyte; electrochemical properties; energy efficiency; MEMBRANE FUEL-CELL; CATHODE MATERIALS; PEMFC SYSTEM; MECHANISMS; ANODE; ELECTROLYTES; SURFACE; PHASE; OPTIMIZATION; SPECTROSCOPY;
D O I
10.3390/su17031000
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Researchers are presently involved in the creation of materials for high-voltage lithium-ion batteries, with a particular emphasis on their practical uses. However, it is important to acknowledge that the components of lithium-ion batteries frequently undergo substantial loss of capacity during the cycling process, which hinders their potential for becoming commercially viable. Lithium-ion battery electrodes can degrade due to electrochemical surface reactions that occur with the electrolyte at the interface between the electrode and electrolyte, as well as from structural degradation within the electrode particles. The presence of structural degradation can be ascribed to the development of imperfections or unstable states, which are expedited by electrochemical processes arising from the electrolyte if unstable states emerge near the electrode/electrolyte contact. Underlying degradation mechanisms can enhance improvements in the electrochemical properties of the electrodes. This paper presents a comprehensive analysis of the various degradation mechanisms that impact the components of lithium-ion batteries to improve energy efficiency. It also discusses innovative methodologies used to analyze the degradation phenomena that occur at the surface of the electrode and within individual battery components.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] New sustainability of lithium-ion batteries
    Rademacher, Ulf
    Stahl und Eisen, 2023, 143 (7-8): : 26 - 28
  • [2] Sustainability perspectives on lithium-ion batteries
    Callie W. Babbitt
    Clean Technologies and Environmental Policy, 2020, 22 : 1213 - 1214
  • [3] Sustainability perspectives on lithium-ion batteries
    Babbitt, Callie W.
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2020, 22 (06) : 1213 - 1214
  • [4] LITHIUM-ION BATTERIES Component Materials
    Patel, Avani
    CHEMICAL ENGINEERING PROGRESS, 2013, 109 (10) : 53 - 56
  • [5] Degradation of Lithium-Ion Batteries in Aerospace
    Bolay, Linda J.
    Schmitt, Tobias
    Mendoza-Hernandez, Omar S.
    Sone, Yoshitsugu
    Latz, Arnulf
    Horstmann, Birger
    2019 EUROPEAN SPACE POWER CONFERENCE (ESPC), 2019,
  • [6] Electrode Degradation in Lithium-Ion Batteries
    Pender, Joshua P.
    Jha, Gaurav
    Youn, Duck Hyun
    Ziegler, Joshua M.
    Andoni, Ilektra
    Choi, Eric J.
    Heller, Adam
    Dunn, Bruce S.
    Weiss, Paul S.
    Penner, Reginald M.
    Mullins, C. Buddie
    ACS NANO, 2020, 14 (02) : 1243 - 1295
  • [7] An Overview of Lithium-ion Batteries for Electric Vehicles
    Chen, Xiaopeng
    Shen, Weixiang
    Thanh Tu Vo
    Cao, Zhenwei
    Kapoor, Ajay
    2012 CONFERENCE ON POWER & ENERGY - IPEC, 2012, : 230 - 235
  • [8] Overview of carbon anodes for lithium-ion batteries
    Zaghib, K
    Kinoshita, K
    NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 27 - 38
  • [9] Overview of Graphene as Anode in Lithium-Ion Batteries
    Ri-Peng Luo
    Wei-Qiang Lyu
    Ke-Chun Wen
    Wei-Dong He
    JournalofElectronicScienceandTechnology, 2018, 16 (01) : 57 - 68
  • [10] Overview of Recycling Techniques for Lithium-Ion Batteries
    Maricinov, V.
    Orac, D.
    Vaskova, I.
    Klimko, J.
    Piroskova, J.
    Nagy, S.
    Liptai, P.
    Takacova, Z.
    KEMIJA U INDUSTRIJI-JOURNAL OF CHEMISTS AND CHEMICAL ENGINEERS, 2024, 73 (3-4): : 147 - 152