Phase change materials in solar energy storage: Recent progress, environmental impact, challenges, and perspectives

被引:1
|
作者
Hamzat, Abdulhammed K. [1 ]
Pasanaje, Adewale Hammed [2 ]
Omisanya, Mayowa I. [3 ]
Sahin, Ahmet Z. [4 ]
Maselugbo, Adesewa O. [5 ]
Adediran, Ibrahim A. [6 ]
Mudashiru, Lateef Owolabi [7 ]
Asmatulu, Eylem [1 ]
Oyetunji, Oluremilekun Ropo [7 ]
Asmatulu, Ramazan [1 ]
机构
[1] Wichita State Univ, Dept Mech Engn, 1845 Fairmount, Wichita, KS 67260 USA
[2] Khalifa Univ Sci & Technol, Dept Phys, Abu Dhabi 127788, U Arab Emirates
[3] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97330 USA
[4] Turkish Japanese Sci & Technol Univ, TR-34906 Istanbul, Turkiye
[5] North Carolina A&T State Univ, Joint Sch Nanosci & Nanoengn, Greensboro, NC 27401 USA
[6] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA
[7] Ladoke Akintola Univ Technol, Dept Mech Engn, Ogbomosho, Nigeria
关键词
Thermal energy storage; Phase change materials; Nanoparticles; Solar energy; Machine learning; LIFE-CYCLE ASSESSMENT; CHANGE MATERIALS PCM; ARTIFICIAL NEURAL-NETWORKS; NANO-ENHANCED-PCM; THERMAL-CONDUCTIVITY; HEAT-TRANSFER; NUMERICAL-ANALYSIS; THERMOPHYSICAL PROPERTIES; PERFORMANCE ENHANCEMENT; PARAFFIN WAX;
D O I
10.1016/j.est.2025.115762
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The escalating global energy demand, coupled with the urgent need to combat climate change, underscores the necessity for effective and sustainable energy storage solutions. Phase change materials (PCMs) have emerged as a viable technology for thermal energy storage, particularly in solar energy applications, due to their ability to efficiently store and release thermal energy during phase transitions while maintaining a near-constant temperature. This paper addresses the limitations of traditional thermal energy storage systems and explores the advancements in PCM integration within various solar energy systems. We discuss innovative methods to enhance heat transfer rates and thermal conductivity, including modifications of extended surfaces, heat pipes, cascading PCMs, encapsulation techniques, and the incorporation of nanoparticles. These enhancements can improve system performance by up to 73 %, with nanoparticle dispersion identified as the most economically viable solution. Additionally, we provide a comprehensive overview of the implementation of the artificial intelligence approach in optimizing PCM-based thermal energy storage systems, emphasizing the effectiveness of ensemble learning frameworks for accurate modeling. The review also highlights the development of nano-PCMs, which demonstrate significant improvements-25.6 % in charging and 23.9 % in discharging rates-compared to conventional PCMs. Furthermore, we analyze the economic and environmental implications of PCM-based systems, focusing on critical issues such as carbon emissions, waste minimization, biodegradability, and alignment with circular economy principles. Finally, we discuss the major challenges and future research directions necessary for advancing PCM-based thermal energy storage systems. It is hoped that this article will update readers and experts working in this area on the recent advancements in PCM-based TES systems and provide an in-depth understanding of ML potentials in revolutionizing PCM-based solar energy storage systems.
引用
收藏
页数:45
相关论文
共 50 条
  • [31] Recent advances in phase change materials for thermal energy storage-a review
    Venkateswarlu, Kavati
    Ramakrishna, Konijeti
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (01)
  • [32] Recent advances in phase change materials for thermal energy storage-a review
    Kavati Venkateswarlu
    Konijeti Ramakrishna
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [33] Recent advances of sugar alcohols phase change materials for thermal energy storage
    Liu, Chenzhen
    Cheng, Qingjiang
    Li, Baohuan
    Liu, Xinjian
    Rao, Zhonghao
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 188
  • [34] Recent developments in nano-enhanced phase change materials for solar thermal storage
    Punniakodi, Banumathi Munuswamy Swami
    Senthil, Ramalingam
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 238
  • [35] Assessment of phase change materials for thermal energy storage in solar drying applications
    Srivastava, Ankit
    Mishra, Himanshu
    Pandey, Saurabh
    Sharma, Atul
    Kumar, Anil
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (03)
  • [36] Pyrazolium Phase-Change Materials for Solar-Thermal Energy Storage
    Matuszek, Karolina
    Vijayaraghavan, R.
    Forsyth, Craig M.
    Mahadevan, Surianarayanan
    Kar, Mega
    MacFarlane, Douglas R.
    CHEMSUSCHEM, 2020, 13 (01) : 159 - 164
  • [37] Solar-powered hybrid energy storage system with phase change materials
    Oskouei, Seyedmohsen Baghaei
    Frate, Guido Francesco
    Christodoulaki, Rosa
    Bayer, Ozguer
    Akmandor, Ibrahim Sinan
    Desideri, Umberto
    Ferrari, Lorenzo
    Drosou, Vassiliki
    Tari, Ilker
    ENERGY CONVERSION AND MANAGEMENT, 2024, 302
  • [38] A review of nanomaterial incorporated phase change materials for solar thermal energy storage
    Nazari, Mohammad Alhuyi
    Maleki, Akbar
    Assad, Mamdouh El Haj
    Rosen, Marc A.
    Haghighi, Arman
    Sharabaty, Hassan
    Chen, Lingen
    SOLAR ENERGY, 2021, 228 : 725 - 743
  • [39] Corrosion effect of phase change materials in solar thermal energy storage application
    Vasu, Anusuiah
    Hagos, Ftwi Y.
    Noor, M. M.
    Mamat, R.
    Azmi, W. H.
    Abdullah, Abdul A.
    Ibrahim, Thamir K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 : 19 - 33
  • [40] MXene-based phase change materials for solar thermal energy storage
    Solangi, Nadeem Hussain
    Mubarak, Nabisab Mujawar
    Karri, Rama Rao
    Mazari, Shaukat Ali
    Jatoi, Abdul Sattar
    Koduru, Janardhan Reddy
    Dehghani, Mohammad Hadi
    ENERGY CONVERSION AND MANAGEMENT, 2022, 273