The Satisfiability and Validity Problems for Probabilistic CTL

被引:0
|
作者
Kucera, Antonin [1 ]
机构
[1] Masaryk Univ, Fac Informat, Bot 68a, Brno 60200, Czech Republic
来源
关键词
Satisfiability; Probabilistic temporal logics; Probabilistic CTL; TIME; LOGIC;
D O I
10.1007/978-3-031-72621-7_2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic CTL is obtained from the standard CTL (Computational Tree Logic) by replacing the existential and universal path quantifiers with the probabilistic operator where the probability of runs satisfying a given path formula is bounded by a rational constant. We survey the existing results about the satisfiability and validity problems for probabilistic CTL, and we also present some of the underlying proof techniques.
引用
收藏
页码:9 / 18
页数:10
相关论文
共 50 条
  • [42] Approximating Satisfiable Satisfiability Problems
    L. Trevisan
    Algorithmica, 2000, 28 : 145 - 172
  • [43] Boundary properties of the satisfiability problems
    Lozin, Vadim
    Purcell, Christopher
    INFORMATION PROCESSING LETTERS, 2013, 113 (09) : 313 - 317
  • [44] A COMPLEXITY INDEX FOR SATISFIABILITY PROBLEMS
    BOROS, E
    CRAMA, Y
    HAMMER, PL
    SAKS, M
    SIAM JOURNAL ON COMPUTING, 1994, 23 (01) : 45 - 49
  • [45] Solving satisfiability problems on FPGAs
    Suyama, T.
    Yokoo, M.
    Sawada, H.
    Lecture Notes in Computer Science, 1142
  • [46] Generating hard satisfiability problems
    Selman, B
    Mitchell, DG
    Levesque, HJ
    ARTIFICIAL INTELLIGENCE, 1996, 81 (1-2) : 17 - 29
  • [47] Recombination operators for satisfiability problems
    Lardeux, F
    Saubion, F
    Hao, JK
    ARTIFICIAL EVOLUTION, 2004, 2936 : 103 - 114
  • [48] Resolution and the integrality of satisfiability problems
    GSIA, Carnegie Mellon University, Pittsburgh, PA 15213, United States
    Math Program Ser B, 1 (1-10):
  • [49] Hypergraph reductions and satisfiability problems
    Pretolani, D
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING, 2004, 2919 : 383 - 397
  • [50] SATISFIABILITY PROBLEMS FOR PROPOSITIONAL CALCULI
    LEWIS, HR
    MATHEMATICAL SYSTEMS THEORY, 1979, 13 (01): : 45 - 53