Few-Shot Learning on Edge Devices Using CLIP: A Resource-Efficient Approach for Image Classification

被引:0
|
作者
Lu, Jin [1 ]
机构
[1] Shenzhen Polytech Univ, Guangdong Key Lab Big Data Intelligence Vocat Educ, Shenzhen 518055, Guangdong, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2024年 / 53卷 / 03期
关键词
Few-shot learning; CLIP model; image classification; edge devices; deep learnig;
D O I
10.5755/j01.itc.53.3.36943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of deep learning, traditional image classification tasks typically require extensive annotated data-sets and complex model training processes, which pose significant challenges for deployment on resource-con-strained edge devices. To address these challenges, this study introduces a few-shot learning method based on OpenAI's CLIP model that significantly reduces computational demands by eliminating the need to run a text encoder at the inference stage. By pre-computing the embedding centers of classification text with a small set of image-text data, our approach enables the direct use of CLIP's image encoder and pre-calculated text embeddings for efficient image classification. This adaptation not only allows for high-precision classification tasks on edge devices with limited computing capabilities but also achieves accuracy and recall rates that close-ly approximate those of the pre-trained ResNet approach while using far less data. Furthermore, our method halves the memory usage compared to other large-scale visual models of similar capacity by avoiding the use of a text encoder during inference, making it particularly suitable for low-resource environments. This com-parative advantage underscores the efficiency of our approach in handling few-shot image classification tasks, demonstrating both competitive accuracy and practical viability in resource-limited settings. The outcomes of this research not only highlight the potential of the CLIP model in few-shot learning scenarios but also pave a new path for efficient, low-resource deep learning applications in edge computing environments
引用
收藏
页数:324
相关论文
共 50 条
  • [41] Ornament image retrieval using few-shot learning
    Sk Maidul Islam
    Subhankar Joardar
    Arif Ahmed Sekh
    International Journal of Multimedia Information Retrieval, 2023, 12
  • [42] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [43] Ornament image retrieval using few-shot learning
    Islam, Sk Maidul
    Joardar, Subhankar
    Sekh, Arif Ahmed
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2023, 12 (02)
  • [44] Efficient plant disease identification using few-shot learning: a transfer learning approach
    Uskaner Hepsag, Pinar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58293 - 58308
  • [45] Few-Shot Learning for Image Denoising
    Jiang, Bo
    Lu, Yao
    Zhang, Bob
    Lu, Guangming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (09) : 4741 - 4753
  • [46] Knowledge Distillation Meets Few-Shot Learning: An Approach for Few-Shot Intent Classification Within and Across Domains
    Sauer, Anna
    Asaadi, Shima
    Kuech, Fabian
    PROCEEDINGS OF THE 4TH WORKSHOP ON NLP FOR CONVERSATIONAL AI, 2022, : 108 - 119
  • [47] Data-Efficient Language Shaped Few-shot Image Classification
    Liang, Zhenwen
    Zhang, Xiangliang
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 4680 - 4686
  • [48] An Incremental Malware Classification Approach Based on Few-Shot Learning
    Qiang, Qian
    Cheng, Mian
    Hu, Yang
    Zhou, Yuan
    Sun, Jiawei
    Ding, Yu
    Qi, Zisen
    Jiao, Fei
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2682 - 2687
  • [49] A Few-Shot Learning Based Approach to IoT Traffic Classification
    Zhao, Zijian
    Lai, Yingxu
    Wang, Yipeng
    Jia, Wenxu
    He, Huijie
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (03) : 537 - 541
  • [50] Contextual Squeeze-and-Excitation for Efficient Few-Shot Image Classification
    Patacchiola, Massimiliano
    Bronskill, John
    Shysheya, Aliaksandra
    Hofmann, Katja
    Nowozin, Sebastian
    Turner, Richard E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,