Permanental Inequalities for Totally Positive Matrices

被引:0
|
作者
Skandera, Mark [1 ]
Soskin, Daniel [2 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
[2] Inst Adv Study, Sch Math, Princeton, NJ USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2025年 / 32卷 / 01期
基金
美国国家科学基金会;
关键词
MINORS;
D O I
10.37236/13098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize ratios of permanents of (generalized) submatrices which are bounded on the set of all totally positive matrices. This provides a permanental analog of results of Fallat, Gekhtman, and Johnson [Adv. Appl. Math. 30 no. 3, (2003) pp. 442-470] concerning ratios of matrix minors. We also extend work of Drake, Gerrish, and the first author [Electron. J. Combin., 11 no. 1, (2004) Note 6] by characterizing the differences of monomials in Z[x1,1, x1,2, ... , xn,n] which evaluate positively on the set of all totally positive n x n matrices.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Intervals of almost totally positive matrices
    Garloff, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 363 : 103 - 108
  • [32] ON DETERMINANTAL AND PERMANENTAL INEQUALITIES
    GYIRES, B
    ACTA MATHEMATICA HUNGARICA, 1995, 66 (03) : 255 - 268
  • [33] Inequalities for permanental processes
    Eisenbaum, Nathalie
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 15
  • [34] MATRICES TOTALLY POSITIVE RELATIVE TO A TREE
    Johnson, Charles R.
    Costas-Santos, Roberto S.
    Tadchiev, Boris
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 211 - 221
  • [35] Hadamard powers and totally positive matrices
    Fallat, Shaun M.
    Johnson, Charles R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) : 420 - 427
  • [36] Equal entries in totally positive matrices
    Farber, Miriam
    Faulk, Mitchell
    Johnson, Charles R.
    Marzion, Evan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 454 : 91 - 106
  • [37] On the Permanental Polynomials of Matrices
    Li, Wei
    Zhang, Heping
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (04) : 1361 - 1374
  • [38] Functional inequalities for positive matrices
    Alakhrass, M.
    Sababheh, M.
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (12): : 2462 - 2472
  • [39] INEQUALITIES FOR PERMANENTS AND PERMANENTAL MINORS
    BRUALDI, RA
    NEWMAN, M
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1965, 61 : 741 - &
  • [40] Barrett-Johnson inequalities for totally nonnegative matrices
    Skandera, Mark
    Soskin, Daniel
    LINEAR & MULTILINEAR ALGEBRA, 2025,