Enhanced electrochemical performance of waste newspaper derived activated carbon aerogel electrode for the supercapacitor

被引:0
|
作者
Nahar, Aynun [1 ]
Akbor, Md. Ahedul [1 ]
Rahman, Md. Atikur [1 ]
Ferdous, Zannatul [2 ]
Hasan, Md. Razibul [3 ]
Kamruzzaman, Sarker [1 ]
Shristy, Nusrat Tabassum [1 ]
Saha, Pallabe [1 ]
Akthar, Umme Sarmeen [4 ]
Bashar, Md. Shahriar [5 ]
机构
[1] Bangladesh Council Sci & Ind Res BCSIR, Inst Natl Analyt Res & Serv INARS, Dhaka, Bangladesh
[2] Bangladesh Chem Ind Corp, Diammonium Phosphate Fertilizer Co Ltd, Dhaka, Bangladesh
[3] Atom Energy Ctr, Mat Sci Div, Dhaka, Bangladesh
[4] Bangladesh Council Sci & Ind Res BCSIR, Inst Glass & Ceram Res & Testing IGCRT, Dhaka, Bangladesh
[5] Bangladesh Council Sci & Ind Res BCSIR, Inst Energy Res Div IERD, Dhaka, Bangladesh
关键词
Waste newspaper; Activated carbon aerogel; Electrode; Super-capacitor; Specific capacitance; PORE SIZES; KOH; NANOTUBES;
D O I
10.1016/j.rineng.2025.104043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study demonstrates the development of an activated carbon aerogel (CA) from the waste newspaper through pyrolysis at 800 degrees C followed by KOH activation and carbonization or without carbonization namely: KOH treated dried carbon aerogel (CAD) and KOH treated carbonized carbon aerogel (CAK). SEM, EDS, XRD, TEM and XPS characterizations were carried out for the prepared electrode material. Prepared CA contains twisted fibrous orientation along with fluffy structure. XPS analysis confirms the existence of functional groups on the surface of the developed CA. XRD diffraction peaks debunk amorphous structure of the prepared electrode material. Electrochemical performances like cyclic voltammetry (CV), galvanometric charging and discharging (GCD) and electrochemical impedance spectroscopy (EIS) were carried out through three electrodes system employing 1M KOH electrolyte solution. CAD (KOH treated dried carbon aerogel) and CAK (KOH treated carbonized carbon aerogel) showed specific capacitance 76.946 and 475.164 F/g respectively at the employed current density 2 A/ g. Additionally, electrode material showed energy density 14.236 and 53.475 Wh /Kg for CAD and CAK respectively with the retention of 76.843 and 91.187 % of primary capacitance after 6000 cycles. This excellent electrochemical performance can be attributed to the presence of the enhanced surface area and surface porosities which enables its' higher charge density for energy storage. Hence, extraordinary electrochemical performances of the developed CAs confirm their application as advance electrode materials for the energy storage devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Activated carbon aerogel containing graphene as electrode material for supercapacitor
    Lee, Yoon Jae
    Kim, Gil-Pyo
    Bang, Yongju
    Yi, Jongheop
    Seo, Jeong Gil
    Song, In Kyu
    MATERIALS RESEARCH BULLETIN, 2014, 50 : 240 - 245
  • [12] Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode
    Hao, Pin
    Zhao, Zhenhuan
    Tian, Jian
    Li, Haidong
    Sang, Yuanhua
    Yu, Guangwei
    Cai, Huaqiang
    Liu, Hong
    Wong, C. P.
    Umar, Ahmad
    NANOSCALE, 2014, 6 (20) : 12120 - 12129
  • [13] Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material
    Zhi-Hang Wang
    Jia-Ying Yang
    Xiong-Wei Wu
    Xiao-Qing Chen
    Jin-Gang Yu
    Yu-Ping Wu
    Journal of Nanoparticle Research, 2017, 19
  • [14] Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications
    Mouna Jaouadi
    Moomen Marzouki
    Ahmed Hichem Hamzaoui
    Ouassim Ghodbane
    Journal of Applied Electrochemistry, 2022, 52 : 125 - 137
  • [15] Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material
    Wang, Zhi-Hang
    Yang, Jia-Ying
    Wu, Xiong-Wei
    Chen, Xiao-Qing
    Yu, Jin-Gang
    Wu, Yu-Ping
    JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (02)
  • [16] Enhanced electrochemical performance of olive stones-derived activated carbon by silica coating for supercapacitor applications
    Jaouadi, Mouna
    Marzouki, Moomen
    Hamzaoui, Ahmed Hichem
    Ghodbane, Ouassim
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2022, 52 (01) : 125 - 137
  • [17] Performance evaluation of waste tyre-activated carbon as a hybrid supercapacitor electrode
    Appiah, Eugene Sefa
    Mensah-Darkwa, Kwadwo
    Agyemang, Frank Ofori
    Agbo, Phillip
    Nashiru, Mahadeen N.
    Andrews, Anthony
    Adom-Asamoah, Mark
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 289
  • [18] Deoxygenated lignin carbon aerogel with enhanced electrochemical performance in organic systems for supercapacitor applications
    Wang, Xinyi
    Liu, Zuguang
    Lu, Xiang
    Wang, Ting
    Wang, Xiao
    Ma, Shihao
    Hu, Rongyan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 308
  • [19] Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor
    Li, Xiangping
    Su, Zhenping
    Liang, Peng
    Zhang, Jianguang
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (07) : 6237 - 6248
  • [20] Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor
    Xiangping Li
    Zhenping Su
    Peng Liang
    Jianguang Zhang
    Biomass Conversion and Biorefinery, 2023, 13 : 6237 - 6248