The time-fractional Schrodinger equation in the context of non-Markovian dynamics with dissipation

被引:0
|
作者
Zu, Chuanjin [1 ]
Yu, Xiangyang [2 ]
机构
[1] Jiangsu Univ Sci & Technol, Ocean Coll, Zhenjiang 212100, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2025年 / 162卷 / 07期
基金
中国国家自然科学基金;
关键词
D O I
10.1063/5.0253816
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, we examine the time-fractional Schrodinger equation from the perspective of non-Markovian dynamics in dissipative systems. First, we determine the range of the fractional derivative's order by examining the memory properties of the time-fractional Schrodinger equation. Next, we employ the Jaynes-Cummings model to identify the appropriate mathematical form of the imaginary unit. Finally, we use the refined equation to study quantum teleportation under amplitude damping noise. It was found that the time-fractional Schrodinger equation without fractional operations on the imaginary unit i might be more suitable for describing non-Markovian dynamics in dissipative systems. Our research may provide a new perspective on the time-fractional Schrodinger equation, contributing to a deeper understanding and further development of time-fractional quantum mechanics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRoDINGER EQUATION
    Ain, Qura Tul
    He, Ji-Huan
    Anjum, Naveed
    Ali, Muhammad
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
  • [22] Non-Markovian generalization of a stochastic Schrodinger equation for two interacting qubits
    Semin, Vitalii
    EPL, 2020, 130 (01)
  • [23] Non-Markovian stochastic Schrodinger equations
    Gambetta, JM
    Wiseman, HM
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 303 - 306
  • [24] Stochastic Schrodinger Equations for Markovian and non-Markovian Cases
    Semina, I.
    Semin, V.
    Petruccione, F.
    Barchielli, A.
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2):
  • [25] Electronic dynamics through conical intersections via non-Markovian stochastic Schrodinger equation with complex modes
    Guo, Yukai
    Gao, Xing
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (05):
  • [26] A NON-MARKOVIAN PHASE SPACE APPROACH TO SCHRODINGER DYNAMICS: THE SPACE-TIME WIGNER TRANSFORM
    Luis Lopez, Jose
    Soler, Juan
    MULTISCALE MODELING & SIMULATION, 2016, 14 (01): : 430 - 451
  • [27] Non-classicality dynamics of Schrodinger cat states in a non-Markovian environment
    Xiang, Cheng
    Xiang, Shao-Hua
    Zhao, Yu-Jing
    PHYSICA SCRIPTA, 2020, 95 (07)
  • [28] Numerical Solution of Time-Fractional Schrodinger Equation by Using FDM
    Serik, Moldir
    Eskar, Rena
    Huang, Pengzhan
    AXIOMS, 2023, 12 (09)
  • [29] Analytic and Numerical Solutions of Time-Fractional Linear Schrodinger Equation
    Edeki, S. O.
    Akinlabi, G. O.
    Adeosun, S. A.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2016, 7 (01): : 1 - 10
  • [30] Solving the time-fractional Schrodinger equation by Krylov projection methods
    Garrappa, Roberto
    Moret, Igor
    Popolizio, Marina
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 115 - 134