SELF-SUPERVISED LEARNING FOR FEW-SHOT BIRD SOUND CLASSIFICATION

被引:0
|
作者
Moummad, Ilyass [1 ]
Farrugia, Nicolas [1 ]
Serizel, Romain [2 ]
机构
[1] IMT Atlantique, Lab STICC, UMR CNRS 6285, Brest, France
[2] Univ Lorraine, Loria, INRIA, CNRS, F-54000 Nancy, France
关键词
Self-supervised learning; data augmentation; few-shot learning; bird sounds;
D O I
10.1109/ICASSPW62465.2024.10627576
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Self-supervised learning (SSL) in audio holds significant potential across various domains, particularly in situations where abundant, unlabeled data is readily available at no cost. This is pertinent in bioacoustics, where biologists routinely collect extensive sound datasets from the natural environment. In this study, we demonstrate that SSL is capable of acquiring meaningful representations of bird sounds from audio recordings without the need for annotations. Our experiments showcase that these learned representations exhibit the capacity to generalize to new bird species in few-shot learning (FSL) scenarios. Additionally, we show that selecting windows with high bird activation for self-supervised learning, using a pretrained audio neural network, significantly enhances the quality of the learned representations.
引用
收藏
页码:600 / 604
页数:5
相关论文
共 50 条
  • [41] SFT: Few-Shot Learning via Self-Supervised Feature Fusion With Transformer
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    IEEE ACCESS, 2024, 12 : 86690 - 86703
  • [42] Exploring PolSAR Images Representation via Self-Supervised Learning and Its Application on Few-Shot Classification
    Zhang, Wu
    Pan, Zongxu
    Hu, Yuxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] SSL-ProtoNet: Self-supervised Learning Prototypical Networks for few-shot learning
    Lim, Jit Yan
    Lim, Kian Ming
    Lee, Chin Poo
    Tan, Yong Xuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [44] Improving In-Context Few-Shot Learning via Self-Supervised Training
    Chen, Mingda
    Du, Jingfei
    Pasunuru, Ramakanth
    Mihaylov, Todor
    Iyer, Srini
    Stoyanov, Veselin
    Kozareva, Zornitsa
    NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3558 - 3573
  • [45] MaskSplit: Self-supervised Meta-learning for Few-shot Semantic Segmentation
    Amac, Mustafa Sercan
    Sencan, Ahmet
    Baran, Orhun Bugra
    Ikizler-Cinbis, Nazli
    Cinbis, Ramazan Gokberk
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 428 - 438
  • [46] Few-shot image classification with composite rotation based self-supervised auxiliary task
    Mazumder, Pratik
    Singh, Pravendra
    Namboodiri, Vinay P.
    NEUROCOMPUTING, 2022, 489 : 179 - 195
  • [47] Self-Supervised SpectralSpatial Graph Prototypical Network for Few-Shot Hyperspectral Image Classification
    Ma, Shan
    Tong, Lei
    Zhou, Jun
    Yu, Jing
    Xiao, Chuangbai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] Self-supervised Prototype Conditional Few-Shot Object Detection
    Kobayashi, Daisuke
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT II, 2022, 13232 : 681 - 692
  • [49] Multi-task Self-supervised Few-Shot Detection
    Zhang, Guangyong
    Duan, Lijuan
    Wang, Wenjian
    Gong, Zhi
    Ma, Bian
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XII, 2024, 14436 : 107 - 119
  • [50] Self-Supervised Task Augmentation for Few-Shot Intent Detection
    Peng-Fei Sun
    Ya-Wen Ouyang
    Ding-Jie Song
    Xin-Yu Dai
    Journal of Computer Science and Technology, 2022, 37 : 527 - 538