On formations of soluble finite groups with the Shemetkov property

被引:0
|
作者
Murashka, Viachaslau I. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya Str 104, Gomel 246019, BELARUS
关键词
Finite group; Schmidt group; Soluble group; Local formation; Formation with the Shemetkov property; <italic>N</italic>-critical graph of a group;
D O I
10.1007/s11587-024-00924-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L. A. Shemetkov posed a Problem 9.74 in Kourovka Notebook to find all local formations F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} of finite groups such that every finite minimal non-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-group is either a Schmidt group or a group of prime order. All known solutions to this problem are obtained under the assumption that every minimal non-F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document}-group is soluble or under the equivalent one. Using the above mentioned solutions we present a polynomial in n time check for a local formation F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {F}}$$\end{document} with bounded pi(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ({\mathfrak {F}})$$\end{document} to be a formation of soluble groups with the Shemtkov property where n=max pi(F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=\max \pi ({\mathfrak {F}})$$\end{document}.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A new formation with Shemetkov property
    Yi, Xiaolan
    Jiang, Shunhuan
    Kamornikov, Sergey
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (12) : 5180 - 5185
  • [22] Finite trifactorized groups and formations
    Ballester-Bolinches, A
    Martínez-Pastor, A
    Pedraza-Aguilera, MC
    JOURNAL OF ALGEBRA, 2000, 226 (02) : 990 - 1000
  • [23] Products of formations of finite groups
    Ballester-Bolinches, A.
    Calvo, Clara
    Esteban-Romero, R.
    JOURNAL OF ALGEBRA, 2006, 299 (02) : 602 - 615
  • [24] FORMATIONS OF FINITE-GROUPS
    DARCY, P
    ARCHIV DER MATHEMATIK, 1974, 25 (01) : 3 - 7
  • [25] FORMATIONS OF FINITE Cπ-GROUPS
    Vdovin, E. P.
    Revin, D. O.
    Shemetkov, L. A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (01) : 29 - 37
  • [26] On Lattices of Formations of Finite Groups
    Shemetkov, L. A.
    Skiba, A. N.
    Vorob'ev, N. N.
    ALGEBRA COLLOQUIUM, 2010, 17 (04) : 557 - 564
  • [27] FORMATIONS AND A CLASS OF LOCALLY SOLUBLE GROUPS
    STONEHEWER, SE
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1966, 62 : 613 - +
  • [28] The Kegel-Shemetkov problem on lattices of generalized subnormal subgroups of finite groups
    Vasiliev A.F.
    Kamornikov S.F.
    Algebra and Logic, 2002, 41 (4) : 228 - 236
  • [29] SUB-FORMATIONS OF FORMATIONS OF FINITE-GROUPS
    SKIBA, AN
    DOKLADY AKADEMII NAUK BELARUSI, 1981, 25 (06): : 492 - 495
  • [30] ON FINITE SOLUBLE GROUPS
    KOVACS, LG
    MATHEMATISCHE ZEITSCHRIFT, 1968, 103 (01) : 37 - &