Machine learning models and dimensionality reduction for improving the Android malware detection

被引:0
|
作者
Moran, Pablo [1 ]
Robles-Gomez, Antonio [1 ]
Duque, Andres [2 ]
Tobarra, Llanos [1 ]
Pastor-Vargas, Rafael [1 ]
机构
[1] Univ Nacl Educ Distancia, Dept Sistemas Comunicac & Control, Madrid, Spain
[2] Univ Nacl Educ Distancia, Dept Lenguajes & Sistemas Informat, Madrid, Spain
关键词
Machine Learning algorithms; Random Forest; Supervised feature selection techniques; Feature filtering techniques; Predictive goodness metrics; SELECTION; REGRESSION;
D O I
10.7717/peerj-cs.2616
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Today, a great number of attack opportunities for cybercriminals arise in Android, since it is one of the most used operating systems for many mobile applications. Hence, it is very important to anticipate these situations. To minimize this problem, the analysis of malware search applications is based on machine learning algorithms. Our work uses as a starting point the features proposed by the DREBIN project, which today constitutes a key reference in the literature, being the largest public Android malware dataset with labeled families. The authors only employ the support vector machine to determine whether a sample is malware or not. This work first proposes a new efficient dimensionality reduction of features, as well as the application of several supervised machine learning algorithms for prediction purposes. Predictive models based on Random Forest are found to achieve the most promising results. They can detect an average of 91.72% malware samples, with a very low false positive rate of 0.13%, and using only 5,000 features. This is just over 9% of the total number of features of DREBIN. It achieves an accuracy of 99.52%, a total precision of 96.91%, as well as a macro average F1-score of 96.99%.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Improving Android Malware Detection Through Dimensionality Reduction Techniques
    Kouliaridis, Vasileios
    Potha, Nektaria
    Kambourakis, Georgios
    MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 57 - 72
  • [2] Malware Detection in Android Systems with Traditional Machine Learning Models: A Survey
    Bayazit, Esra Calik
    Sahingoz, Ozgur Koray
    Dogan, Buket
    2ND INTERNATIONAL CONGRESS ON HUMAN-COMPUTER INTERACTION, OPTIMIZATION AND ROBOTIC APPLICATIONS (HORA 2020), 2020, : 374 - 381
  • [3] Evaluating Machine Learning Models for Android Malware Detection - A Comparison Study
    Rana, Md. Shohel
    Gudla, Charan
    Sung, Andrew H.
    PROCEEDINGS OF 2018 VII INTERNATIONAL CONFERENCE ON NETWORK, COMMUNICATION AND COMPUTING (ICNCC 2018), 2018, : 17 - 21
  • [4] An Android Malware Detection Leveraging Machine Learning
    Shatnawi, Ahmed S.
    Jaradat, Aya
    Yaseen, Tuqa Bani
    Taqieddin, Eyad
    Al-Ayyoub, Mahmoud
    Mustafa, Dheya
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [5] Android Malware Detection Based on Machine Learning
    Wang, Qing-Fei
    Fang, Xiang
    2018 4TH ANNUAL INTERNATIONAL CONFERENCE ON NETWORK AND INFORMATION SYSTEMS FOR COMPUTERS (ICNISC 2018), 2018, : 434 - 436
  • [6] Android Malware Detection Using Machine Learning
    Droos, Ayat
    Al-Mahadeen, Awss
    Al-Harasis, Tasnim
    Al-Attar, Rama
    Ababneh, Mohammad
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 36 - 41
  • [7] A Comparison of Machine and Deep Learning Models for Detection and Classification of Android Malware Traffic
    Bovenzi, Giampaolo
    Cerasuolo, Francesco
    Montieri, Antonio
    Nascita, Alfredo
    Persico, Valerio
    Pescape, Antonio
    2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022), 2022,
  • [8] Application of Machine Learning Algorithms for Android Malware Detection
    Kakavand, Mohsen
    Dabbagh, Mohammad
    Dehghantanha, Ali
    2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS (CIIS 2018), 2018, : 32 - 36
  • [9] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568
  • [10] Explainable Machine Learning for Malware Detection on Android Applications
    Palma, Catarina
    Ferreira, Artur
    Figueiredo, Mario
    INFORMATION, 2024, 15 (01)