Untargeted Metabolomics Analysis Using FTIR and LC-HRMS for Differentiating Sonchus arvensis Plant Parts and Evaluating Their Biological Activity

被引:0
|
作者
Maslahat, Mamay [1 ,2 ]
Mardinata, Dion [2 ]
Surur, Siti Maspupatu [2 ]
Lioe, Hanifah Nuryani [3 ]
Syafitri, Utami Dyah [4 ]
Rafi, Mohamad [1 ,5 ,6 ]
Rohaeti, Eti [1 ,6 ]
机构
[1] IPB Univ, Fac Math & Nat Sci, Dept Chem, Bogor 16680, Indonesia
[2] Nusa Bangsa Univ, Fac Math & Nat Sci, Dept Chem, Bogor 16166, Indonesia
[3] IPB Univ, Fac Agr Technol, Dept Food Sci & Technol, Bogor 16680, Indonesia
[4] IPB Univ, Fac Math & Nat Sci, Dept Stat, Bogor 16680, Indonesia
[5] IPB Univ, Adv Res Lab, IPB Dramaga Campus, Bogor 16680, Indonesia
[6] IPB Univ, Int Res Ctr Food Nutr & Hlth, Trop Biopharmaca Res Ctr, IPB Taman Kencana Campus, Bogor 16128, Indonesia
关键词
Biological activity; FTIR; LC-MS/MS; Metabolite profiling; <italic>Sonchus arvensis</italic>; EXTRACTS; LEAF; ROOT; STEM;
D O I
10.1002/cbdv.202401537
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The composition and concentration of compounds in medicinal plants vary based on several factors, including the specific part of the plant being used. These variations in composition and concentration lead to differences in biological activity levels. In this study, we aimed to assess the phytochemical profile of Sonchus arvensis and to investigate the biological activity of different plant parts (roots, stems, and leaves) using a metabolomics approach. We analyzed the plant extracts for total phenolic and flavonoid levels, antioxidant activity, and xanthine oxidase inhibition. We also conducted metabolite profiling using Fourier-transform infrared spectroscopy and liquid chromatography-high resolution mass spectrometry. A total of 17 metabolites were identified (13 in leaves, 10 in stems, and 9 in roots). Principal component analysis effectively differentiated S. arvensis extracts based on differences in plant parts. These findings indicate that the quantity and diversity of metabolites present in the roots, stems, and leaves influence the biological activity of S. arvensis.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] Comparison of Three Untargeted Data Processing Workflows for Evaluating LC-HRMS Metabolomics Data
    Hemmer, Selina
    Manier, Sascha K.
    Fischmann, Svenja
    Westphal, Folker
    Wagmann, Lea
    Meyer, Markus R.
    METABOLITES, 2020, 10 (09) : 1 - 15
  • [2] Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics
    Zhang, Xiuqiong
    Zheng, Fujian
    Zhao, Chunxia
    Li, Zaifang
    Li, Chao
    Xia, Yueyi
    Zheng, Sijia
    Wang, Xinxin
    Sun, Xiaoshan
    Zhao, Xinjie
    Lin, Xiaohui
    Lu, Xin
    Xu, Guowang
    ANALYTICAL CHEMISTRY, 2022, 94 (48) : 16604 - 16613
  • [3] Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS
    Souard, Florence
    Delporte, Cedric
    Stoffelen, Piet
    Thevenot, Etienne A.
    Noret, Nausicaa
    Dauvergne, Bastien
    Kauffmann, Jean-Michel
    Van Antwerpen, Pierre
    Stevigny, Caroline
    FOOD CHEMISTRY, 2018, 245 : 603 - 612
  • [4] Comparative analysis of features extraction protocols for LC-HRMS untargeted metabolomics in mountain cheese 'identitation' '
    Pellacani, S.
    Citti, C.
    Strani, L.
    Benedetti, B.
    Becchi, P. P.
    Pizzamiglio, V.
    Michelini, S.
    Cannazza, G.
    De Juan, A.
    Cocchi, M.
    Durante, C.
    MICROCHEMICAL JOURNAL, 2024, 207
  • [5] Detection of Pork in Beef Meatballs Using LC-HRMS Based Untargeted Metabolomics and Chemometrics for Halal Authentication
    Windarsih, Anjar
    Riswanto, Florentinus Dika Octa
    Bakar, Nor Kartini Abu
    Yuliana, Nancy Dewi
    Dachriyanus, Abdul
    Rohman, Abdul
    MOLECULES, 2022, 27 (23):
  • [6] Comparison of Three Untargeted Data Processing Workflows for Evaluating LC-HRMS Metabolomics Data (vol 10, 378, 2020)
    Hemmer, Selina
    Manier, Sascha K.
    Fischmann, Svenja
    Westphal, Folker
    Wagmann, Lea
    Meyer, Markus R.
    METABOLITES, 2020, 10 (11)
  • [7] Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software
    Xinsong Du
    Farhad Dastmalchi
    Hao Ye
    Timothy J. Garrett
    Matthew A. Diller
    Mei Liu
    William R. Hogan
    Mathias Brochhausen
    Dominick J. Lemas
    Metabolomics, 19
  • [8] Validation of a dual LC-HRMS platform for clinical metabolic diagnosis in serum, bridging quantitative analysis and untargeted metabolomics
    Gertsman, Ilya
    Gangoiti, Jon A.
    Barshop, Bruce A.
    METABOLOMICS, 2014, 10 (02) : 312 - 323
  • [9] Evaluating LC-HRMS metabolomics data processing software using FAIR principles for research software
    Du, Xinsong
    Dastmalchi, Farhad
    Ye, Hao
    Garrett, Timothy J.
    Diller, Matthew A.
    Liu, Mei
    Hogan, William R.
    Brochhausen, Mathias
    Lemas, Dominick J.
    METABOLOMICS, 2023, 19 (02)
  • [10] FTIR- and UHPLC-Q-Orbitrap HRMS-based Metabolomics of Sonchus arvensis Extracts and Evaluation of Their Free Radical Scavenging Activity
    Rafi, Mohamad
    Hasanah, Triyani
    Karomah, Alfi Hudatul
    Mulyati, Ade Heri
    Trivadila
    Rahminiwati, Min
    Achmadi, Suminar Setiati
    Iswantini, Dyah
    SAINS MALAYSIANA, 2022, 51 (10): : 3261 - 3269