Multi-Material Gradient Printing Using Meniscus-enabled Projection Stereolithography (MAPS)

被引:0
|
作者
Kunwar, Puskal [1 ,2 ]
Poudel, Arun [1 ,2 ]
Aryal, Ujjwal [1 ,2 ]
Xie, Rui [1 ,2 ]
Geffert, Zachary J. [1 ,2 ]
Wittmann, Haven [1 ,2 ]
Fougnier, Daniel [1 ,2 ]
Chiang, Tsung Hsing [3 ]
Maye, Mathew M. [3 ]
Li, Zhen [4 ]
Soman, Pranav [1 ,2 ]
机构
[1] Syracuse Univ, Biomed & Chem Engn Dept, Syracuse, NY 13210 USA
[2] BioInspired Inst, Syracuse, NY 13210 USA
[3] Syracuse Univ, Dept Chem, Syracuse, NY 13210 USA
[4] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA
来源
ADVANCED MATERIALS TECHNOLOGIES | 2025年 / 10卷 / 06期
基金
美国国家卫生研究院;
关键词
bioprinting; digital light processing; gradient printing; meniscus; multi-material printing; nano-material printing;
D O I
10.1002/admt.202400675
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Light-based additive manufacturing methods are widely used to print high-resolution 3D structures for applications in tissue engineering, soft robotics, photonics, and microfluidics, among others. Despite this progress, multi-material printing with these methods remains challenging due to constraints associated with hardware modifications, control systems, cross-contamination, waste, and resin properties. Here, a new printing platform coined Meniscus-enabled Projection Stereolithography (MAPS) is reported, a vat-free method that relies on generating and maintaining a resin meniscus between a crosslinked structure and bottom window to print lateral, vertical, discrete, or gradient multi-material 3D structures with no waste and user-defined mixing between layers. MAPS is compatible with a wide range of resins shown and can print complex multi-material 3D structures without requiring specialized hardware, software, or complex washing protocols. MAPS's ability to print structures with microscale variations in mechanical stiffness, opacity, surface energy, cell densities, and magnetic properties provides a generic method to make advanced materials for a broad range of applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multi-material and parameter-controllable stereolithography 3D printing of graded permittivity composites for high voltage insulators
    Zhong, Lipeng
    Du, Junxian
    Xi, Yingwei
    Wang, Feng
    Wu, Linmei
    Li, Jinyu
    Tu, Min
    Li, Xiaopeng
    Fei, Guanghai
    VIRTUAL AND PHYSICAL PROTOTYPING, 2023, 18 (01)
  • [32] Printing of covalent organic frameworks using multi-material in-air coalescence inkjet printing technique
    Teo, Mei Ying
    Kee, Seyoung
    Stuart, Logan
    Stringer, Jonathan
    Aw, Kean C.
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (36) : 12051 - 12056
  • [33] Multi-Material Printing of Multi Lengthscale Bio-composite Membranes
    Lee, Nic A.
    Weber, Ramon E.
    Kennedy, Joseph H.
    Van Zak, Josh J.
    Duro-Royo, Jorge
    Oxman, Neri
    IASS 60TH ANNIVERSARY SYMPOSIUM (IASS SYMPOSIUM 2019) - 9TH INTERNATIONAL CONFERENCE ON TEXTILE COMPOSITES AND INFLATABLE STRUCTURES (STRUCTURAL MEMBRANES 2019), 2019, : 2511 - 2518
  • [34] Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds
    Arcaute, Karina
    Mann, Brenda
    Wicker, Ryan
    ACTA BIOMATERIALIA, 2010, 6 (03) : 1047 - 1054
  • [35] Multi-material freeform gradient-index spectrometers
    Desai, Ankur X.
    Schmidt, Greg R.
    Moore, Duncan T.
    OPTICS EXPRESS, 2022, 30 (24) : 42912 - 42922
  • [36] Achromatization of multi-material gradient-index singlets
    Desai, A. Nkur X.
    Schmidt, G. Reg R.
    Moore, D. Uncan T.
    OPTICS EXPRESS, 2022, 30 (22) : 40306 - 40314
  • [37] Patterned Multi-Material Die Attach Process Using Aerosol-Jet Printing
    Spai, Wesley
    Papapolymerou, John
    Chahal, Premjeet
    Albrecht, John D.
    2023 IEEE RADIO AND WIRELESS SYMPOSIUM, RWS, 2023, : 132 - 134
  • [38] Inkjet printing resolution study for multi-material rapid prototyping
    Ibrahim, Mustaffa
    Otsubo, Takayuki
    Narahara, Hiroyuki
    Koresawa, Hiroshi
    Suzuki, Hiroshi
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2006, 49 (02) : 353 - 360
  • [39] 4D PRINTING: MULTI-MATERIAL SHAPE CHANGE
    Tibbits, Skylar
    ARCHITECTURAL DESIGN, 2014, 84 (01) : 116 - 121
  • [40] Omnidirectional and Multi-Material In Situ 3D Printing Using Acoustic Levitation
    Chen, Hongyi
    Bansal, Shubhi
    Plasencia, Diego Martinez
    Di-Silvio, Lucy
    Huang, Jie
    Subramanian, Sriram
    Hirayama, Ryuji
    ADVANCED MATERIALS TECHNOLOGIES, 2024,