The general Caputo-Katugampola fractional derivative and numerical approach for solving the fractional differential equations

被引:0
|
作者
Sadek, Lakhlifa [1 ,2 ]
Ldris, Sahar Ahmed [3 ]
Jarad, Fahd [4 ,5 ]
机构
[1] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamilnadu, India
[2] Abdelmalek Essaadi Univ, Fac Sci & Technol, Dept Math, BP 34, Tetouan 32003, Morocco
[3] King Khalid Univ, Dept Ind Engn, Abha, Saudi Arabia
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Hawally 32093, Kuwait
关键词
Numerical methods; Psi-CFKD; Psi-CFKI; Psi-CKFCP;
D O I
10.1016/j.aej.2025.02.065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, we present the general fractional derivative (FD) along with its fractional integral (FI), specifically the psi-Caputo-Katugampola fractional derivative (psi-CKFD). The Caputo-Katugampola (CKFD), the Caputo (CFD), and the Caputo-Hadamard FD (CHFD) are all special cases of this new fractional derivative. We also introduce the psi-Katugampola fractional integral (psi-KFI) and discuss several related theorems. An existence and uniqueness theorem for a psi-Caputo-Katugampola fractional Cauchy problem (psi-CKFCP) is established. Furthermore, we present an adaptive predictor-corrector algorithm for solving the psi-CKFCP. We include examples and applications to illustrate its effectiveness. The derivative used in our approach is significantly influenced by the parameters delta, gamma, and the function psi, which makes it a valuable tool for developing fractional calculus models.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 50 条
  • [21] A NUMERICAL APPROACH FOR THE FRACTIONAL STOKES EQUATIONS WITH CAPUTO DERIVATIVE
    Wang, Zhen
    Zhao, Siyao
    Wei, Yabing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (03): : 1050 - 1068
  • [22] Computational analysis of fractional modified Degasperis-Procesi equation with Caputo-Katugampola derivative
    Singh, Jagdev
    Gupta, Arpita
    AIMS MATHEMATICS, 2023, 8 (01): : 194 - 212
  • [23] Numerical solutions of fractional optimal control with Caputo–Katugampola derivative
    N. H. Sweilam
    A. M. Nagy
    T. M. Al-Ajami
    Advances in Difference Equations, 2021
  • [24] Symmetrical Solutions for Non-Local Fractional Integro-Differential Equations via Caputo-Katugampola Derivatives
    Al-Ghafri, Khalil S. S.
    Alabdala, Awad T. T.
    Redhwan, Saleh S. S.
    Bazighifan, Omar
    Ali, Ali Hasan
    Iambor, Loredana Florentina
    SYMMETRY-BASEL, 2023, 15 (03):
  • [25] Rothe's method for solving multi-term Caputo-Katugampola fractional delay integral diffusion equations
    Du, Jinsheng
    Lu, Cuizhi
    Jiang, Yirong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) : 7426 - 7442
  • [26] A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE
    Herik, Leila Moghadam Dizaj
    Javidi, Mohammad
    Shafiee, Mahmoud
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2022, 37 (01): : 51 - 66
  • [27] On the initial value problem of impulsive differential equation involving Caputo-Katugampola fractional derivative of order q ∈ (1, 2)
    Zhang, Xian-Min
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2022, 12 (01) : 75 - 105
  • [28] On the Nonlinear Fractional Differential Equations with Caputo Sequential Fractional Derivative
    Ye, Hailong
    Huang, Rui
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [29] Numerical solution of fractional differential equations with Caputo derivative by using numerical fractional predict–correct technique
    Nur Amirah Zabidi
    Zanariah Abdul Majid
    Adem Kilicman
    Zarina Bibi Ibrahim
    Advances in Continuous and Discrete Models, 2022
  • [30] Well-posedness of a class of Caputo-Katugampola fractional sweeping processes
    Faiz, Zakaria
    Zeng, Shengda
    Benaissa, Hicham
    CHAOS SOLITONS & FRACTALS, 2025, 193