The general Caputo-Katugampola fractional derivative and numerical approach for solving the fractional differential equations

被引:0
|
作者
Sadek, Lakhlifa [1 ,2 ]
Ldris, Sahar Ahmed [3 ]
Jarad, Fahd [4 ,5 ]
机构
[1] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Math, Chennai 602105, Tamilnadu, India
[2] Abdelmalek Essaadi Univ, Fac Sci & Technol, Dept Math, BP 34, Tetouan 32003, Morocco
[3] King Khalid Univ, Dept Ind Engn, Abha, Saudi Arabia
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkiye
[5] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Hawally 32093, Kuwait
关键词
Numerical methods; Psi-CFKD; Psi-CFKI; Psi-CKFCP;
D O I
10.1016/j.aej.2025.02.065
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this manuscript, we present the general fractional derivative (FD) along with its fractional integral (FI), specifically the psi-Caputo-Katugampola fractional derivative (psi-CKFD). The Caputo-Katugampola (CKFD), the Caputo (CFD), and the Caputo-Hadamard FD (CHFD) are all special cases of this new fractional derivative. We also introduce the psi-Katugampola fractional integral (psi-KFI) and discuss several related theorems. An existence and uniqueness theorem for a psi-Caputo-Katugampola fractional Cauchy problem (psi-CKFCP) is established. Furthermore, we present an adaptive predictor-corrector algorithm for solving the psi-CKFCP. We include examples and applications to illustrate its effectiveness. The derivative used in our approach is significantly influenced by the parameters delta, gamma, and the function psi, which makes it a valuable tool for developing fractional calculus models.
引用
收藏
页码:539 / 557
页数:19
相关论文
共 50 条
  • [1] Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach
    Ngo Van Hoa
    Ho Vu
    Tran Minh Duc
    FUZZY SETS AND SYSTEMS, 2019, 375 : 70 - 99
  • [2] Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    Odzijewicz, Tatiana
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06):
  • [3] Fractional differential equations of Caputo-Katugampola type and numerical solutions
    Zeng, Shengda
    Baleanu, Dumitru
    Bai, Yunru
    Wu, Guocheng
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 549 - 554
  • [4] Stability of Nonlinear Implicit Differential Equations with Caputo-Katugampola Fractional Derivative
    Dai, Qun
    Zhang, Yunying
    MATHEMATICS, 2023, 11 (14)
  • [5] Impulsive Coupled System of Fractional Differential Equations with Caputo-Katugampola Fuzzy Fractional Derivative
    Sajedi, Leila
    Eghbali, Nasrin
    Aydi, Hassen
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [6] Numerical solutions of fractional optimal control with Caputo-Katugampola derivative
    Sweilam, N. H.
    Nagy, A. M.
    Al-Ajami, T. M.
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [7] Qualitative Analysis of Stochastic Caputo-Katugampola Fractional Differential Equations
    Khan, Zareen A.
    Liaqat, Muhammad Imran
    Akgul, Ali
    Conejero, J. Alberto
    AXIOMS, 2024, 13 (11)
  • [8] Analysis of Caputo-Katugampola fractional differential system
    Ma, Li
    Chen, Yingjie
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):
  • [9] On Caputo-Katugampola Fractional Stochastic Differential Equation
    Omaba, McSylvester Ejighikeme
    Al Sulaimani, Hamdan
    MATHEMATICS, 2022, 10 (12)
  • [10] Non-instantaneous impulses interval-valued fractional differential equations with Caputo-Katugampola fractional derivative concept
    Vu Ho
    Van Hoa Ngo
    FUZZY SETS AND SYSTEMS, 2021, 404 (404) : 111 - 140