Characterizing Jacobians of algebraic curves with involution

被引:0
|
作者
Krichever, Igor [1 ,2 ]
机构
[1] Columbia Univ, New York, NY 10025 USA
[2] Natl Res Univ Higher Sch Econ, Skolkovo Inst Sci & Technol, Moscow, Russia
关键词
OPERATORS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give two characterizations of Jacobians of curves with involution having fixed points in the framework of two particular cases of Welter's trisecant conjecture. The geometric form of each of these characterizations is the statement that such Jacobians are exactly those containing a shifted Abelian subvariety whose image under the Kummer map is orthogonal to an explicitly given vector.
引用
收藏
页码:2341 / 2378
页数:38
相关论文
共 50 条
  • [31] Topology of the compactified Jacobians of singular curves
    Jens Piontkowski
    Mathematische Zeitschrift, 2007, 255 : 195 - 226
  • [32] ON THE NERON MODEL OF JACOBIANS OF SHIMURA CURVES
    JORDAN, BW
    LIVNE, RA
    COMPOSITIO MATHEMATICA, 1986, 60 (02) : 227 - 236
  • [33] Rational points on Jacobians of hyperelliptic curves
    Mueller, Jan Steffen
    ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS, 2015, 41 : 225 - 259
  • [34] Fast arithmetic on Jacobians of Picard curves
    Flon, S
    Oyono, R
    PUBLIC KEY CRYPTOGRAPHY - PKC 2004, PROCEEDINGS, 2004, 2947 : 55 - 68
  • [35] ELLIPTIC-CURVES IN GENERALIZED JACOBIANS
    TREIBICH, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (10): : 531 - 534
  • [36] Compactified Jacobians of curves with spine decompositions
    Esteves, Eduardo
    GEOMETRIAE DEDICATA, 2009, 139 (01) : 167 - 181
  • [37] Topology of the compactified Jacobians of singular curves
    Piontkowski, Jens
    MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (01) : 195 - 226
  • [38] Selmer varieties for curves with CM Jacobians
    Coates, John
    Kim, Minhyong
    KYOTO JOURNAL OF MATHEMATICS, 2010, 50 (04) : 827 - 852
  • [39] Constructing distinct curves with isomorphic Jacobians
    Howe, EW
    JOURNAL OF NUMBER THEORY, 1996, 56 (02) : 381 - 390
  • [40] FINITENESS OF SUPERELLIPTIC CURVES WITH CM JACOBIANS
    Chen, Ke
    Lu, Xin
    Zuo, Kang
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (06): : 1591 - 1662