Enhancing the efficiency of non-fullerene organic solar cells by using a volatilizable solid additive system

被引:0
|
作者
Tarique, Walia Binte [1 ]
Howlader, Ashraful Hossain [1 ]
Dipta, Shahriyar Safat [1 ]
Pratik, Ayush [1 ]
Uddin, Ashraf [1 ]
机构
[1] Univ New South Wales, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
来源
SUSTAINABLE ENERGY & FUELS | 2025年 / 9卷 / 08期
基金
澳大利亚研究理事会;
关键词
ELECTRON-TRANSPORT LAYER; HIGH-PERFORMANCE; THIN-FILM; ACCEPTOR; ZNO; INTERFACE;
D O I
10.1039/d4se01240b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The morphology of the active layer mostly affects the photovoltaic efficiency of organic solar cells (OSCs). Optimizing the configuration of the bulk heterojunction (BHJ) is a very effective approach to enhancing the donor-acceptor network in the active layer. This work aims to examine the influence of a gallium (Ga) doped ZnO electron transport layer (ETL) and a solid additive 1,4-diiodobenzene (DIB) on the nanomorphology and performance of an inverted OSC. Nevertheless, the challenge of selecting appropriate solid additives for device optimization is arduous due to the extensive range of organic photovoltaic materials obtainable. This study presents the utilization of DIB as a solid additive to enhance the efficiency of OSCs. The utilization of modified ETL and DIB as solvent additives has been found to enhance the development of a desirable nanomorphology characterized by a bi-continuous interpenetrating network of donor and acceptor. Devices treated with DIB have significantly enhanced performance compared to control devices. In the case of non-fullerene OSCs, the power conversion efficiency (PCE) achieved a value of 16.67%. Additionally, employing DIB in the production of OSCs results in enhanced charge transport and extraction, improved crystallinity, reduced charge recombination, and superior phase separation. We provide evidence that the utilization of additive engineering is a very efficient approach for improving the efficiency of organic solar cells.
引用
收藏
页码:2109 / 2118
页数:10
相关论文
共 50 条
  • [21] Isomeric non-fullerene acceptors for high-efficiency organic solar cells
    Jiang, Changzun
    Li, ZhiXiang
    Li, Shitong
    Li, Mingpeng
    Yao, Zhaoyang
    Li, Chenxi
    Wan, Xiangjian
    Chen, Yongsheng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (39) : 14525 - 14531
  • [22] Boosting the efficiency of organic solar cells via dual non-fullerene acceptors
    Cao, Ziliang
    Liao, Qiaogan
    Zhang, Zheling
    Huang, Tianhuan
    Deng, Zhengqi
    Guan, Hao
    Geng, Shuang
    Wang, Dongjie
    Zhang, Jian
    DYES AND PIGMENTS, 2023, 219
  • [23] High Sensitivity of Non-Fullerene Organic Solar Cells Morphology and Performance to a Processing Additive
    Alqahtani, Obaid
    Lv, Jie
    Xu, Tongle
    Murcia, Victor
    Ferron, Thomas
    McAfee, Terry
    Grabner, Devin
    Duan, Tainan
    Collins, Brian A.
    SMALL, 2022, 18 (23)
  • [24] Influence of solvent additive on the performance and aging behavior of non-fullerene organic solar cells
    Arredondo, Belen
    Perez-Martinez, Jose Carlos
    Munoz-Diaz, Laura
    Lopez-Gonzalez, Maria del Carmen
    Martin-Martin, Diego
    del Pozo, Gonzalo
    Hernandez-Balaguera, Enrique
    Romero, Beatriz
    Lamminaho, Jani
    Turkovic, Vida
    Madsen, Morten
    SOLAR ENERGY, 2022, 232 : 120 - 127
  • [25] Origin of the Additive-Induced VOC Change in Non-Fullerene Organic Solar Cells
    Wang, Xiaojing
    Feng, Chuang
    Liu, Peng
    He, Zhicai
    Cao, Yong
    SMALL, 2022, 18 (12)
  • [26] Enhancing the Performance of Non-Fullerene Organic Solar Cells Using Regioregular Wide-Bandgap Polymers
    Liu, Yahui
    Lu, Hao
    Li, Miao
    Zhang, Zhe
    Feng, Shiyu
    Xu, Xinjun
    Wu, Youzhi
    Bo, Zhishan
    MACROMOLECULES, 2018, 51 (21) : 8646 - 8651
  • [27] High efficiency non-fullerene polymer solar cells
    Jenekhe, Samson
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [28] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [29] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [30] Organic solar cells based on non-fullerene acceptors
    Hou, Jianhui
    Inganas, Olle
    Friend, Richard H.
    Gao, Feng
    NATURE MATERIALS, 2018, 17 (02) : 119 - 128