Overexpression of the R2R3-MYB transcription factor GmMYB3a enhances isoflavone accumulation in soybean

被引:0
|
作者
Xu, Zibo [1 ]
Li, Jingwen [1 ]
Song, Xue [2 ]
Zhang, Yongqiang [1 ]
Wang, Ying [1 ]
Zhu, Youcheng [1 ]
Liu, Tianyi [1 ]
He, Yuxuan [3 ]
Liu, Yajing [1 ]
Wang, Qingyu [1 ]
Yan, Fan [1 ]
机构
[1] Jilin Univ, Coll Plant Sci, Changchun, Peoples R China
[2] Changchun Culture Sq Greening Management Ctr, Changchun, Peoples R China
[3] Jilin Acad Agr Sci, Inst Agr Qual Stand & Testing Technol, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
FLAVONOID BIOSYNTHESIS; EXPRESSION; DROUGHT; GENES;
D O I
10.1111/ppl.70120
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Soybean isoflavones, natural phytoestrogens within the flavonoid family, exhibit diverse physiological benefits such as anticancer, antioxidant, and cardioprotective properties. Yet, the underlying biosynthetic pathways remain unclear. Research is required to get better knowledge of soybean isoflavone production and its potential uses. Our work thoroughly examined the R2R3-MYB subclass in soybean and discovered a new MYB transcription factor, GmMYB3a, which shares significant similarities with Arabidopsis MYB genes and regulates isoflavone biosynthesis. Our study reveals that GmMYB3a localizes to the nucleus and membrane, concurs with its potential involvement in the biosynthesis of isoflavones. Our analysis also indicated a synergistic expression pattern between GmMYB3a and seed development, thereby creating the hypothesis that it has a critical role in the regulation of isoflavone synthesis. Transgenic experiments further demonstrated that GmMYB3a positively regulates isoflavone biosynthesis and leads to its overexpression. GmMYB3a has been implicated in abiotic stress responses, affecting soybean stress tolerance. RNA sequencing analysis revealed that GmMYB3a regulates downstream genes involved in isoflavone, flavonoid, and phenylalanine metabolism, especially the key chalcone synthase genes, CHS7 and CHS8. Moreover, GmMYB3a was shown to be tightly associated with GmCHS7 and GmCHS8 expressions, potentially regulating them directly. Yeast two-hybrid screening identified GmMYB3a interacting proteins crucial for the synthesis of physiologically active substances and abiotic stress responses. Our results increase knowledge of the regulatory mechanisms of GmMYB3a and establish a molecular network involving GmMYB3a, GmCHS7, and GmCHS8, thereby offering novel strategies for improving soybean quality and stress-tolerant breeding.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A R2R3-type MYB transcription factor gene from soybean, GmMYB12, is involved in flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis
    Wang, Feibing
    Ren, Xuqin
    Zhang, Fan
    Qi, Mingyang
    Zhao, Huiyun
    Chen, Xinhong
    Ye, Yuxiu
    Yang, Jiayin
    Li, Shuguang
    Zhang, Yi
    Niu, Yuan
    Zhou, Qing
    PLANT BIOTECHNOLOGY REPORTS, 2019, 13 (03) : 219 - 233
  • [42] Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chilling and oxidative stress
    Meng, X.
    Yin, B.
    Feng, H. -L.
    Zhang, S.
    Liang, X. -Q.
    Meng, Q. -W.
    BIOLOGIA PLANTARUM, 2014, 58 (01) : 121 - 130
  • [43] Activator-type R2R3-MYB genes induce a repressor-type R2R3-MYB gene to balance anthocyanin and proanthocyanidin accumulation
    Hui Zhou
    Kui Lin-Wang
    Wang, Furong
    Espley, Richard V.
    Ren, Fei
    Zhao, Jianbo
    Ogutu, Collins
    He, Huaping
    Jiang, Quan
    Allan, Andrew C.
    Han, Yuepeng
    NEW PHYTOLOGIST, 2019, 221 (04) : 1919 - 1934
  • [44] Diversification of R2R3-MYB Transcription Factors in the Tomato Family Solanaceae
    Daniel J. Gates
    Susan R. Strickler
    Lukas A. Mueller
    Bradley J. S. C. Olson
    Stacey D. Smith
    Journal of Molecular Evolution, 2016, 83 : 26 - 37
  • [45] Expansion and Diversification of the Populus R2R3-MYB Family of Transcription Factors
    Wilkins, Olivia
    Nahal, Hardeep
    Foong, Justin
    Provart, Nicholas J.
    Campbell, Malcolm M.
    PLANT PHYSIOLOGY, 2009, 149 (02) : 981 - 993
  • [46] Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10
    Shouqian Feng
    Yanling Wang
    Song Yang
    Yuting Xu
    Xuesen Chen
    Planta, 2010, 232 : 245 - 255
  • [47] Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor
    Li, Guo
    Serek, Margrethe
    Gehl, Christian
    PLANT CELL REPORTS, 2023, 42 (03) : 609 - 627
  • [48] A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway
    Huang, Wenjun
    Sun, Wei
    Lv, Haiyan
    Luo, Ming
    Zeng, Shaohua
    Pattanaik, Sitakanta
    Yuan, Ling
    Wang, Ying
    PLOS ONE, 2013, 8 (08):
  • [49] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Feng Xu
    Yingjing Ning
    Weiwei Zhang
    Yongling Liao
    Linling Li
    Hua Cheng
    Shuiyuan Cheng
    Functional & Integrative Genomics, 2014, 14 : 177 - 189
  • [50] Characterization of a Citrus R2R3-MYB Transcription Factor that Regulates the Flavonol and Hydroxycinnamic Acid Biosynthesis
    Liu, Chaoyang
    Long, Jianmei
    Zhu, Kaijie
    Liu, Linlin
    Yang, Wei
    Zhang, Hongyan
    Li, Li
    Xu, Qiang
    Deng, Xiuxin
    SCIENTIFIC REPORTS, 2016, 6