A novel Grasshopper optimized ResU-Net for Brain Tumor Segmentation

被引:0
|
作者
Tomar, Nishtha [1 ]
Bhatt, Prakhar [1 ]
Bhatnagar, Gaurav [1 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, Rajasthan, India
关键词
Brain tumors; U-Net; Grasshopper Optimization; ResU-Net; MRI scans;
D O I
10.1109/ICSIPA62061.2024.10687058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors pose significant health risks, making accurate segmentation from MRI images critical for effective diagnosis, treatment planning, and monitoring. Traditional manual segmentation methods are often prone to errors, prompting the development of advanced architectures such as U-Net. However, U-Net faces challenges, including vanishing gradients and a high number of hyperparameters that require careful tuning. To address these limitations, we propose the Grasshopper Optimized ResU-Net model, which incorporates residual blocks within the optimized U-Net framework. This novel architecture enhances brain tumor segmentation by effectively learning complex features from MRI scans while optimizing performance through Grasshopper Optimization. Extensive experimental evaluations demonstrate that the proposed model significantly outperforms existing methods in brain tumor segmentation, highlighting its efficacy in clinical applications.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The application of ResU-net and OBIA for landslide detection from multi-temporal sentinel-2 images
    Ghorbanzadeh, Omid
    Gholamnia, Khalil
    Ghamisi, Pedram
    BIG EARTH DATA, 2023, 7 (04) : 961 - 985
  • [32] Brain Tumor Segmentation with Optimized Random Forest
    Lefkovits, Laszlo
    Lefkovits, Szidonia
    Szilagyi, Laszlo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 : 88 - 99
  • [33] 西湖凹陷平北斜坡带ResU-Net复杂断裂识别技术及应用
    王红岩
    赵洪
    蔡坤
    邵宇蓝
    赵天亮
    杨敏
    工程地球物理学报, 2025, 22 (02) : 161 - 171
  • [34] nnU-Net for Brain Tumor Segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Full, Peter M.
    Vollmuth, Philipp
    Maier-Hein, Klaus H.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 118 - 132
  • [35] SGEResU-Net for brain tumor segmentation
    Liu, Dongwei
    Sheng, Ning
    He, Tao
    Wang, Wei
    Zhang, Jianxia
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (06) : 5576 - 5590
  • [36] An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures
    Sarhadi, Ali
    Ravanshadnia, Mehdi
    Monirabbasi, Armin
    Ghanbari, Milad
    IEEE OPEN JOURNAL OF THE COMPUTER SOCIETY, 2024, 5 : 636 - 647
  • [37] A Novel ConvLSTM-Based U-net for Improved Brain Tumor Segmentation
    Almiahi, Osama Majeed Hilal
    Albu-Salih, Alaa Taima
    Alhajim, Dhafer
    IEEE ACCESS, 2024, 12 : 157346 - 157358
  • [38] SEResU-Net for Multimodal Brain Tumor Segmentation
    Yan, Chengdong
    Ding, Jurong
    Zhang, Hui
    Tong, Ke
    Hua, Bo
    Shi, Shaolong
    IEEE ACCESS, 2022, 10 : 117033 - 117044
  • [39] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [40] Efficient nnU-Net for Brain Tumor Segmentation
    Magadza, Tirivangani
    Viriri, Serestina
    IEEE ACCESS, 2023, 11 : 126386 - 126397