Interfacial lithium-ion transportation in solid-state batteries: Challenges and prospects

被引:1
|
作者
Liu, Ming [1 ]
Song, Ailing [1 ]
Zhang, Xinyi [1 ]
Wang, Jie [1 ]
Fan, Yuqian [1 ]
Wang, Guoxiu [2 ]
Tian, Hao [2 ]
Ma, Zhipeng [1 ,3 ]
Shao, Guangjie [1 ,3 ]
机构
[1] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Hebei Key Lab Heavy Met Deep Remediat Water & Reso, Qinhuangdao 066004, Peoples R China
[2] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Broadway, NSW 2007, Australia
[3] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
关键词
Interfacial lithium-ion transfer; Interfacial resistance; Kinetics design; Solid-state battery; LI-METAL BATTERIES; NI-RICH; HIGH-PERFORMANCE; ELECTROLYTE; ANODE; DESIGN; LIQUID; STABILITY; ULTRATHIN; INSIGHTS;
D O I
10.1016/j.nanoen.2025.110749
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium-ion batteries (SSBs) have gained widespread attention due to their enhanced safety and energy density over conventional liquid electrolyte systems. However, their practical application is hindered by significant polarization during cycling, primarily caused by increased interface impedance. To address the challenges of slow lithium-ion diffusion, optimizing interfacial kinetics has emerged as a key strategy to improve the electrochemical performance of SSBs. However, the mechanisms behind battery failure, especially interface polarization, are not fully understood and require further investigation. This review explores the origins of interfacial polarization, including poor contact, parasitic reactions, and space charge layer, supported by theoretical calculations, experimental data, and advanced characterizations. Then, the latest progress categorized as in-situ solidification, buffer layer, ionic liquid, solid-state electrolytes modification, artificial solid electrolyte interphases, coating layers, dielectric additives, and piezoelectric additives are summarized to elucidate the underlying mechanisms of Li+ transport across interfaces. Finally, the integration of mechanical behavior with outstanding interfacial engineering is emphasized as a key factor for advancing SSBs performance and stability, providing insights for the development of next-generation lithium-based batteries.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Interfacial Defect of Lithium Metal in Solid-State Batteries
    Yang, Menghao
    Mo, Yifei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (39) : 21494 - 21501
  • [42] Solid-State Revolution: Assessing the Potential of Solid Polymer Electrolytes in Lithium-Ion Batteries
    Hadad, Saeed
    Pope, Michael A.
    Kamkar, Milad
    Tam, Kam Chiu
    ADVANCED SUSTAINABLE SYSTEMS, 2025, 9 (01):
  • [43] Review on interfacial compatibility of solid-state lithium batteries
    Yichi Zhang
    Guoxu Zheng
    Zhuo Yuan
    Xinzhe Huang
    Feiyan Long
    Yinan Li
    Ionics, 2023, 29 : 1639 - 1666
  • [44] Probing the interfacial chemistry of solid-state lithium batteries
    Sangeland, Christofer
    Mindemark, Jonas
    Younesi, Reza
    Brandell, Daniel
    SOLID STATE IONICS, 2019, 343
  • [45] Review on interfacial compatibility of solid-state lithium batteries
    Zhang, Yichi
    Zheng, Guoxu
    Yuan, Zhuo
    Huang, Xinzhe
    Long, Feiyan
    Li, Yinan
    IONICS, 2023, 29 (05) : 1639 - 1666
  • [46] Research Progress on Solid-State Electrolytes in Solid-State Lithium Batteries: Classification, Ionic Conductive Mechanism, Interfacial Challenges
    Ai, Shun
    Wu, Xianli
    Wang, Jintao
    Li, Xu
    Hao, Xiaofeng
    Meng, Yuezhong
    NANOMATERIALS, 2024, 14 (22)
  • [47] Review of various sulfide electrolyte types for solid-state lithium-ion batteries
    Suci, Windhu Griyasti
    Aliwarga, Harry Kasuma
    Azinuddin, Yazid Rijal
    Setyawati, Rosana Budi
    Stulasti, Khikmah Nur Rikhy
    Purwanto, Agus
    OPEN ENGINEERING, 2022, 12 (01): : 409 - 423
  • [48] Recent advances of silicon-based solid-state lithium-ion batteries
    Chen, Xin
    Fu, Chuankai
    Wang, Yuanheng
    Yan, Jiaxin
    Ma, Yulin
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Gao, Yunzhi
    ETRANSPORTATION, 2024, 19
  • [49] Challenges and prospects of nanosized silicon anodes in lithium-ion batteries
    Zhao, Xiuyun
    Lehto, Vesa-Pekka
    NANOTECHNOLOGY, 2021, 32 (04)
  • [50] Numerical Modeling of Damage Evolution Phenomenon in Solid-State Lithium-Ion Batteries
    Behrou, Reza
    Maute, Kurt
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : A2573 - A2589