Wave Height Estimation From X-Band Marine Radar Data Using SWHFormer Method

被引:0
|
作者
Yang, Zhiding [1 ]
Hallert, Merrick C. [2 ]
Huang, Weimin [1 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NL A1B 3X5, Canada
[2] Oregon State Univ, Sch Civil & Construct Engn, Corvallis, OR 97331 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Deep learning; Significant wave height (SWH); Vision Transformer; X-band marine radar;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an innovative deep learning-based approach to measuring sea significant wave height (SWH) from shore-based X-band radar data. Initially, the first image from each minute of the radar sequence acquired by the X-band radar is extracted and sub-images covering the ocean area are intercepted for analysis. Subsequently, these extracted radar sub-images are fed into a SWH regression network based on the Vision Transformer (ViT) model, named SWHFormer, for training the model and conducting real-time SWH measurements. The radar data used in the validation experiment were collected at Guadalupe Dunes, CA, USA. Concurrent hourly SWH data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) are employed as ground truth. Comparative analysis with several existing SWH estimation methods reveals that the proposed SWHFormer-based method achieves a relatively superior SWH estimation performance.
引用
收藏
页码:191 / 192
页数:2
相关论文
共 50 条
  • [31] A Method for Detecting Rainfall From X-Band Marine Radar Images
    Zheng, Yan
    Shi, Zhen
    Lu, Zhizhong
    Ma, Wenfeng
    IEEE ACCESS, 2020, 8 : 19046 - 19057
  • [32] Wave Energy Dissipation in a Shallow Coral Reef Lagoon Using Marine X-Band Radar Data
    Navarro, W.
    Orfila, A.
    Orejarena-Rondon, A.
    Velez, J. C.
    Lonin, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2021, 126 (11)
  • [33] Multi-directional wave spectra from marine X-band radar
    Lund, Bjorn
    Collins, Clarence O., III
    Tamura, Hitoshi
    Graber, Hans C.
    OCEAN DYNAMICS, 2016, 66 (08) : 973 - 988
  • [34] Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks
    M. A. Krinitskiy
    V. A. Golikov
    N. N. Anikin
    A. I. Suslov
    A. V. Gavrikov
    N. D. Tilinina
    Moscow University Physics Bulletin, 2023, 78 : S128 - S137
  • [35] Mitigation of Rain Effect on Wave Height Measurement Using X-Band Radar Sensor
    Yang, Zhiding
    Huang, Weimin
    Chen, Xinwei
    IEEE SENSORS JOURNAL, 2022, 22 (06) : 5929 - 5938
  • [36] Significant wave height prediction from X-band marine radar images using deep learning with 3D convolutions
    Kwon, Ji-Woo
    Chang, Won-Du
    Yang, Young Jun
    PLOS ONE, 2023, 18 (10):
  • [37] Multi-directional wave spectra from marine X-band radar
    Björn Lund
    Clarence O. Collins
    Hitoshi Tamura
    Hans C. Graber
    Ocean Dynamics, 2016, 66 : 973 - 988
  • [38] Estimating Significant Wave Height from X-Band Navigation Radar Using Convolutional Neural Networks
    Krinitskiy, M. A.
    Golikov, V. A.
    Anikin, N. N.
    Suslov, A. I.
    Gavrikov, A. V.
    Tilinina, N. D.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2023, 78 (SUPPL 1) : S128 - S137
  • [39] GLUE based marine X-band weather radar data calibration and uncertainty estimation
    Nielsen, Jesper Ellerbaek
    Beven, Keith
    Thorndahl, Soren
    Rasmussen, Michael R.
    URBAN WATER JOURNAL, 2015, 12 (04) : 283 - 294
  • [40] A Method to Mitigate the Influence of Rain on Wind Direction Estimation From X-band Marine Radar Images
    Chen, Xinwei
    Huang, Weimin
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,