Neuro-fuzzy modeling of pulp temperature in rapid cooling chamber

被引:0
|
作者
Santos, italo Emannuel dos Anjos [1 ]
Okita, Willian Minoru [1 ]
Lourenconi, Dian [1 ]
Amorim, Magno do Nascimento [2 ]
de Sa Silva Lins, Ana Carolina [3 ]
Miranda, Isadora Benevides [4 ]
Turco, Silvia Helena Nogueira [1 ]
机构
[1] Fed Univ Sao Francisco Valley UNIVASF, Collegiate Agr & Environm, Ave Antonio C Magalhaes,510 St Antonio, Juazeiro, BA, Brazil
[2] Univ Sao Paulo, Luiz De Queiroz Coll Agr, Ave Padua Dias, 11-Agron, Piracicaba, SP, Brazil
[3] Univ Fed Lavras, Agr Engn Dept, Lavras, MG, Brazil
[4] Univ Fed Campina Grande, Agr Engn Dept, R Aprigio Veloso,882 Univ, Campina Grande, PB, Brazil
关键词
Post-harvest losses; Cold chain; Neuro-fuzzy model; Mango; Rapid cooling chambers; INFERENCE SYSTEM; PERFORMANCE;
D O I
10.1007/s13197-024-06109-7
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Post-harvest fruit losses in Brazil can reach up to 40%, with inadequacies in the cold chain being one of the primary causes. This study proposes the development of a neuro-fuzzy model to predict the pulp temperature of mangoes in rapid cooling chambers, aiming to enhance the efficiency of the cooling process. The experiment was conducted on a commercial mango farm in Petrolina, Pernambuco. The results demonstrated that the neuro-fuzzy model can accurately estimate the pulp temperature of mangoes (R-2 = 0.98), thereby aiding decision-making related to optimal rapid cooling times. Implementing this model could significantly reduce post-harvest losses and help ensure the quality of the final product.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Structural vibration modeling using a neuro-fuzzy approach
    Khoshnoud, Farbod
    Khoshnoud, Farhoud
    Sadeghi, A.
    Esat, I. I.
    Ventura, C. E.
    de Silva, C. W.
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 685 - +
  • [42] A hybrid algorithm for structure identification of neuro-fuzzy modeling
    Ouyang, CS
    Lee, SJ
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3611 - 3616
  • [43] Recurrent neuro-fuzzy networks for nonlinear process modeling
    Zhang, J
    Morris, AJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (02): : 313 - 326
  • [44] Prediction of Solar Activity Based on Neuro-Fuzzy Modeling
    Abdel-Fattah Attia
    Rabab Abdel-Hamid
    Maha Quassim
    Solar Physics, 2005, 227 : 177 - 191
  • [45] Adaptive arrangement classifier via neuro-fuzzy modeling
    Shiina, K
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 577 - 580
  • [46] Time series forecasting with a neuro-fuzzy modeling scheme
    Peng, Hung-Wen
    Wu, Shen-Fu
    Wei, Chia-Ching
    Lee, Shie-Jue
    APPLIED SOFT COMPUTING, 2015, 32 : 481 - 493
  • [47] Neuro-fuzzy approach for modeling complex functional mappings
    Brockmann, W
    Huwendiek, O
    SMC 2000 CONFERENCE PROCEEDINGS: 2000 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN & CYBERNETICS, VOL 1-5, 2000, : 3734 - 3739
  • [48] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [49] A neuro-fuzzy modular system for modeling nonlinear systems
    Turki, Amina
    Chtourou, Mohamed
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2024, 18
  • [50] Air quality prediction by neuro-fuzzy modeling approach
    Lin, Yu-Chun
    Lee, Shie-Jue
    Ouyang, Chen-Sen
    Wu, Chih-Hung
    APPLIED SOFT COMPUTING, 2020, 86 (86)