LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry

被引:1
|
作者
Chen, Weirong [1 ,2 ]
Le Chen [3 ]
Wang, Rui [4 ]
Pollefeys, Marc [4 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Munich Ctr Machine Learning, Munich, Germany
[3] MPI Intelligent Syst, Stuttgart, Germany
[4] Microsoft, Redmond, WA USA
关键词
D O I
10.1109/CVPR52733.2024.01876
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual odometry estimates the motion of a moving camera based on visual input. Existing methods, mostly focusing on two-view point tracking, often ignore the rich temporal context in the image sequence, thereby overlooking the global motion patterns and providing no assessment of the full trajectory reliability. These shortcomings hinder performance in scenarios with occlusion, dynamic objects, and low-texture areas. To address these challenges, we present the Long-term Effective Any Point Tracking (LEAP) module. LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation. Moreover, LEAP's temporal probabilistic formulation integrates distribution updates into a learnable iterative refinement module to reason about point-wise uncertainty. Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes. Our mindful integration showcases a novel practice by employing long-term point tracking as the front-end. Extensive experiments demonstrate that the proposed pipeline significantly outperforms existing baselines across various visual odometry benchmarks.
引用
收藏
页码:19844 / 19853
页数:10
相关论文
共 50 条
  • [41] Long-Term Tracking in the Wild: A Benchmark
    Valmadre, Jack
    Bertinetto, Luca
    Henriques, Joao F.
    Tao, Ran
    Vedaldi, Andrea
    Smeulders, Arnold W. M.
    Torr, Philip H. S.
    Gavves, Efstratios
    COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 692 - 707
  • [42] Siamese networks with distractor-reduction method for long-term visual object tracking
    Xuan, Shiyu
    Li, Shengyang
    Zhao, Zifei
    Kou, Longxuan
    Zhou, Zhuang
    Xia, Gui-Song
    PATTERN RECOGNITION, 2021, 112
  • [43] High speed long-term visual object tracking algorithm for real robot systems
    Jiang, Muxi
    Li, Rui
    Liu, Qisheng
    Shi, Yingjing
    Tlelo-Cuautle, Esteban
    NEUROCOMPUTING, 2021, 434 : 268 - 284
  • [44] Is there any long-term memory effect in the tropical cyclones?
    Varotsos, Costas A.
    Efstathiou, Maria N.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2013, 114 (3-4) : 643 - 650
  • [45] Is there any long-term memory effect in the tropical cyclones?
    Costas A. Varotsos
    Maria N. Efstathiou
    Theoretical and Applied Climatology, 2013, 114 : 643 - 650
  • [46] Is any diet superior for long-term weight loss?
    不详
    JOURNAL OF FAMILY PRACTICE, 2008, 57 (10): : 640 - +
  • [47] Long-term ventilatory support at home: any progress?
    Campbell, DA
    Pierce, RJ
    MEDICAL JOURNAL OF AUSTRALIA, 1998, 168 (01) : 7 - 8
  • [48] Long-term maturation of visual pathways
    Madrid, M
    Crognale, MA
    VISUAL NEUROSCIENCE, 2000, 17 (06) : 831 - 837
  • [49] Creation of visual long-term memory
    Danko Nikolić
    Wolf Singer
    Perception & Psychophysics, 2007, 69 : 904 - 912
  • [50] Creation of visual long-term memory
    Nikolic, Danko
    Singer, Wolf
    PERCEPTION & PSYCHOPHYSICS, 2007, 69 (06): : 904 - 912