An overview of photothermal materials for solar-driven interfacial evaporation

被引:4
|
作者
Fang, Yiming [1 ]
Gao, Huimin [1 ]
Cheng, Kaiting [1 ]
Bai, Liang [1 ]
Li, Zhengtong [2 ]
Zhao, Yadong [3 ]
Xu, Xingtao [1 ]
机构
[1] Zhejiang Ocean Univ, Marine Sci & Technol Coll, Zhoushan 316022, Peoples R China
[2] Hohai Univ, State Key Lab HydrolWater Resources & Hydraul Engn, Nanjing 210098, Peoples R China
[3] Zhejiang Ocean Univ, Sch Food & Pharm, Zhoushan 316022, Peoples R China
关键词
Solar-driven interfacial evaporation; Desalination; Wastewater treatment; Photothermal material; Salt-resistance; Durability; CARBON NANOTUBE; FAST CLEANUP; EFFICIENT; WATER; MEMBRANE; PHOTOCATALYSIS; SURFACE; DESIGN;
D O I
10.1016/j.cclet.2024.109925
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The utilization of solar-driven interfacial evaporation technology is highly important in addressing the energy crisis and water scarcity, primarily because of its affordability and minimal energy usage. Enhancing the performance of solar energy evaporation and minimizing material degradation during application can be achieved through the design of novel photothermal materials. In solar interfacial evaporation, photothermal materials exhibit a wide range of additional characteristics, but a systematic overview is lacking. This paper encompasses an examination of various categories and principles pertaining to photothermal materials, as well as the structural design considerations for salt-resistant materials. Additionally, we discuss the versatile uses of this appealing technology in different sectors related to energy and the environment. Furthermore, potential solutions to enhance the durability of photothermal materials are also highlighted, such as the rational design of micro/nano-structures, the use of adhesives, the addition of anti-corrosion coatings, and the preparation of self-healing surfaces. The objective of this review is to offer a viable resolution for the logical creation of high-performance photothermal substances, presenting a guide for the forthcoming advancement of solar evaporation technology. (c) 2025 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Towards highly efficient solar-driven interfacial evaporation for desalination
    Liu, Xinghang
    Mishra, Debesh Devadutta
    Wang, Xianbao
    Peng, Hongyan
    Hu, Chaoquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17907 - 17937
  • [32] Solar-driven interfacial evaporation: Research advances in structural design
    Sun, Yuqing
    Tan, Xinyan
    Yuan, Xin
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [33] Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes
    Wei, Yumeng
    Yang, Yawei
    Zhao, Qi
    Ma, Yong
    Qiang, Mengyuan
    Fu, Linjing
    Liu, Yihong
    Zhang, Jianfei
    Qu, Zhiguo
    Que, Wenxiu
    SMALL, 2024, 20 (32)
  • [34] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [35] Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies
    He, Fang
    Wu, Xiaochun
    Gao, Jie
    Wang, Zhenxing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (48) : 27121 - 27139
  • [36] Upcycled graphene integrated fiber-based photothermal hybrid nanocomposites for solar-driven interfacial water evaporation
    Khoei, Jalal Karimzadeh
    Bafqi, Mohammad Sajad Sorayani
    Saeidiharzand, Shaghayegh
    Mohammadilooey, Mandana
    Hezarkhani, Marjan
    Okan, Burcu Saner
    Kosar, Ali
    Sadaghiani, Abdolali K.
    DESALINATION, 2023, 562
  • [37] Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation
    Li, Yaling
    Cui, Xuexue
    Zhao, Mingyu
    Xu, Yunshi
    Chen, Leilei
    Cao, Zhijuan
    Yang, Shuguang
    Wang, Yi
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (02) : 704 - 710
  • [38] Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation
    Zhang, Jingjing
    Ma, Jiaxiang
    Liu, Dongmei
    Liu, Dongqing
    Han, Yu
    Xu, Ying
    Cui, Fuyi
    Wang, Wei
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (19) : 10548 - 10556
  • [39] Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation
    Shi, Congcan
    Zhang, Xue
    Nilghaz, Azadeh
    Wu, Zhenhua
    Wang, Tao
    Zhu, Bocheng
    Tang, Guiming
    Su, Bin
    Tian, Junfei
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [40] Emerging Materials for Interfacial Solar-Driven Water Purification
    Cao, Sijia
    Thomas, Arne
    Li, Changxia
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (08)