Studying the Dynamics Response of Viscoelastic Orthotropic Plates Based on Fractional-Order Derivatives and Shifted Legendre Polynomials

被引:0
|
作者
Fan, Qianqian [1 ]
Liu, Qiumei [1 ]
Chen, Yiming [2 ]
Cui, Yuhuan [1 ]
Qu, Jingguo [1 ]
Wang, Lei [1 ,3 ]
机构
[1] North China Univ Sci & Technol, Coll Sci, Tangshan 063000, Peoples R China
[2] Yanshan Univ, Sch Sci, Qinhuangdao 066004, Peoples R China
[3] HESAM Univ, Arts & Metiers Inst Technol, LISPEN, F-59000 Lille, France
基金
中国国家自然科学基金;
关键词
orthotropic plates; viscoelastic; fractional order; shifted Legendre polynomials; numerical computation; simulation of dynamics response; GALERKIN METHOD; MODEL; ALGORITHM; EQUATIONS;
D O I
10.3390/math13040622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper primarily investigates the dynamics response of viscoelastic orthotropic plates under a fractional-order derivative model, which is efficiently simulated numerically using the FKV (Fractional Kelvin-Voigt) model and the shifted Legendre polynomial algorithm. By establishing the fractional-order governing equation and directly solving it in the time domain using a shifted Legendre polynomial, the approach achieves low error and high accuracy. The analysis shows that the load, plate thickness, and creep time all affect the plate displacement, and the fractional-order model outperforms the integer-order model to better capture the dynamics response of the material.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Spectral treatment for the fractional-order wave equation using shifted Chebyshev orthogonal polynomials
    El-Sayed, A. A.
    Agarwal, P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [22] Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials
    El-Sayed, Adel A.
    Agarwal, Praveen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (11) : 3978 - 3991
  • [23] Variational fractional-order modeling of viscoelastic axially moving plates and vibration simulation
    Qu, Jingguo
    Zhang, Qunwei
    Yang, Aimin
    Chen, Yiming
    Zhang, Qi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [24] Matrix method based on the shifted Chebyshev polynomials for solving fractional-order PDEs with initial-boundary conditions
    Zhao, Fuqiang
    Huang, Qingxue
    Xie, Jiaquan
    Ma, Lifeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1114 - 1124
  • [25] Synchronization in Dynamically Coupled Fractional-Order Chaotic Systems: Studying the Effects of Fractional Derivatives
    Echenausia-Monroy, J. L.
    Rodriguez-Martine, C. A.
    Ontanon-Garcia, L. J.
    Alvarez, J.
    Pena Ramirez, J.
    COMPLEXITY, 2021, 2021
  • [26] Synchronization in Dynamically Coupled Fractional-Order Chaotic Systems: Studying the Effects of Fractional Derivatives
    Echenausía-Monroy, J.L.
    Rodríguez-Martíne, C.A.
    Ontañón-García, L.J.
    Alvarez, J.
    Pena Ramirez, J.
    Complexity, 2021, 2021
  • [27] Estimate of the fractional advection-diffusion equation with a time-fractional term based on the shifted Legendre polynomials
    Aghdam, Yones Esmaeelzade
    Mesgarani, Hamid
    Asadi, Zeynab
    JOURNAL OF MATHEMATICAL MODELING, 2023, 11 (04): : 731 - 744
  • [28] State Parametrization Method Based on Shifted Legendre Polynomials for Solving Fractional Optimal Control Problems
    Dehghan R.
    International Journal of Applied and Computational Mathematics, 2018, 4 (1)
  • [29] A numerical approach based on ln-shifted Legendre polynomials for solving a fractional model of pollution
    Jleli, M.
    Kirane, M.
    Samet, B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7356 - 7367
  • [30] Orthonormal shifted discrete Legendre polynomials for the variable-order fractional extended Fisher-Kolmogorov equation
    Hosseininia, M.
    Heydari, M. H.
    Avazzadeh, Z.
    CHAOS SOLITONS & FRACTALS, 2022, 155