Evaluation of repeated machine learning-based phenotyping in patients with cardiogenic shock

被引:0
|
作者
Zweck, E. [1 ]
Kanwar, M. [2 ]
Li, S. [3 ]
Sinha, S. S. [4 ]
Garan, A. R. [5 ]
Hernandez-Montfort, J. [6 ]
Abraham, J. [7 ]
Polzin, A. [1 ]
Kelm, M. [1 ]
Burkhoff, D. [8 ]
Kapur, N. K. [9 ]
机构
[1] Univ Hosp Duesseldorf, Dusseldorf, Germany
[2] Allegheny Gen Hosp, Pittsburgh, PA USA
[3] Med City Healthcare, Dallas, TX USA
[4] Inova Heart & Vasc Inst, Falls Church, VA USA
[5] Beth Israel Deaconess Med Ctr, Boston, MA USA
[6] Baylor Scott & White Hlth, Temple, TX USA
[7] Providence Heart & Vasc Inst, Ctr Cardiovasc Analyt Res & Data Sci, Portland, OR USA
[8] Cardiovasc Res Fdn, New York, NY USA
[9] Tufts Med Ctr Inc, Cardiovasc Ctr, Boston, MA USA
关键词
D O I
10.1093/eurheartj/ehae666.1697
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Clinical Phenotyping of Out-of-Hospital Cardiac Arrest Patients With Shockable Rhythm - Machine Learning-Based Unsupervised Cluster Analysis -
    Okada, Yohei
    Komukai, Sho
    Kitamura, Tetsuhisa
    Kiguchi, Takeyuki
    Irisawa, Taro
    Yamada, Tomoki
    Yoshiya, Kazuhisa
    Park, Changhwi
    Nishimura, Tetsuro
    Ishibe, Takuya
    Yagi, Yoshiki
    Kishimoto, Masafumi
    Inoue, Toshiya
    Hayashi, Yasuyuki
    Sogabe, Taku
    Morooka, Takaya
    Sakamoto, Haruko
    Suzuki, Keitaro
    Nakamura, Fumiko
    Matsuyama, Tasuku
    Nishioka, Norihiro
    Kobayashi, Daisuke
    Matsui, Satoshi
    Hirayama, Atsushi
    Yoshimura, Satoshi
    Kimata, Shunsuke
    Shimazu, Takeshi
    Ohtsuru, Shigeru
    Iwami, Taku
    CIRCULATION JOURNAL, 2022, 86 (04) : 668 - +
  • [32] Machine Learning Model Predicting In-Hospital Mortality for Cardiogenic Shock
    Kochar, Ajar
    Foote, Henry
    Ratliff, William
    Balu, Suresh
    CIRCULATION, 2024, 150
  • [33] Data processing pipeline for cardiogenic shock prediction using machine learning
    Jajcay, Nikola
    Bezak, Branislav
    Segev, Amitai
    Matetzky, Shlomi
    Jankova, Jana
    Spartalis, Michael
    El Tahlawi, Mohammad
    Guerra, Federico
    Friebel, Julian
    Thevathasan, Tharusan
    Berta, Imrich
    Poelzl, Leo
    Naegele, Felix
    Pogran, Edita
    Cader, F. Aaysha
    Jarakovic, Milana
    Gollmann-Tepekoeylue, Can
    Kollarova, Marta
    Petrikova, Katarina
    Tica, Otilia
    Krychtiuk, Konstantin A.
    Tavazzi, Guido
    Skurk, Carsten
    Huber, Kurt
    Boehm, Allan
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [34] A Machine Learning-Based Method to Identify Bipolar Disorder Patients
    Mateo-Sotos, J.
    Torres, A. M.
    Santos, J. L.
    Quevedo, O.
    Basar, C.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (04) : 2244 - 2265
  • [35] Machine learning-based prediction models for accidental hypothermia patients
    Yohei Okada
    Tasuku Matsuyama
    Sachiko Morita
    Naoki Ehara
    Nobuhiro Miyamae
    Takaaki Jo
    Yasuyuki Sumida
    Nobunaga Okada
    Makoto Watanabe
    Masahiro Nozawa
    Ayumu Tsuruoka
    Yoshihiro Fujimoto
    Yoshiki Okumura
    Tetsuhisa Kitamura
    Ryoji Iiduka
    Shigeru Ohtsuru
    Journal of Intensive Care, 9
  • [36] Towards the synthesis of spectral imaging and machine learning-based approaches for non-invasive phenotyping of plants
    Solovchenko, Alexei
    Shurygin, Boris
    Nesterov, Dmitry A.
    Sorokin, Dmitry V.
    BIOPHYSICAL REVIEWS, 2023, 15 (05) : 939 - 946
  • [37] Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation
    Reiko Akiyama
    Takao Goto
    Toshiaki Tameshige
    Jiro Sugisaka
    Ken Kuroki
    Jianqiang Sun
    Junichi Akita
    Masaomi Hatakeyama
    Hiroshi Kudoh
    Tanaka Kenta
    Aya Tonouchi
    Yuki Shimahara
    Jun Sese
    Natsumaro Kutsuna
    Rie Shimizu-Inatsugi
    Kentaro K. Shimizu
    Nature Communications, 14 (1)
  • [38] Machine learning-based prediction of intraoperative hypoxemia for pediatric patients
    Park, Jung-Bin
    Lee, Ho-Jong
    Yang, Hyun-Lim
    Kim, Eun-Hee
    Lee, Hyung-Chul
    Jung, Chul-Woo
    Kim, Hee-Soo
    PLOS ONE, 2023, 18 (03):
  • [39] Machine learning-based prediction models for accidental hypothermia patients
    Okada, Yohei
    Matsuyama, Tasuku
    Morita, Sachiko
    Ehara, Naoki
    Miyamae, Nobuhiro
    Jo, Takaaki
    Sumida, Yasuyuki
    Okada, Nobunaga
    Watanabe, Makoto
    Nozawa, Masahiro
    Tsuruoka, Ayumu
    Fujimoto, Yoshihiro
    Okumura, Yoshiki
    Kitamura, Tetsuhisa
    Iiduka, Ryoji
    Ohtsuru, Shigeru
    JOURNAL OF INTENSIVE CARE, 2021, 9 (01)
  • [40] Machine learning-based prediction of mortality in pediatric trauma patients
    Deleon, M. P.
    Murula, A.
    Moreira, A.
    AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2024, 367 : S317 - S317