Assessing variable importance in survival analysis using machine learning

被引:0
|
作者
Wolock, C. J. [1 ]
Gilbert, P. B. [2 ]
Simon, N. [3 ]
Carone, M. [3 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, 432 Guardian Dr, Philadelpia, PA 19104 USA
[2] Fred Hutchinson Canc Ctr, Vaccine & Infect Dis Div, 1100 Fairview Ave North,POB 19024, Seattle, WA 98109 USA
[3] Univ Washington, Dept Biostat, 3980 15th Ave NE, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Censoring; Debiased machine learning; Feature importance; Time-to-event outcome; PREDICTIVE ACCURACY; EXPLAINED VARIATION; HIV; MODELS; ACQUISITION; MEN; SEX;
D O I
10.1093/biomet/asae061
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Given a collection of features available for inclusion in a predictive model, it may be of interest to quantify the relative importance of a subset of features for the prediction task at hand. For example, in HIV vaccine trials, participant baseline characteristics are used to predict the probability of HIV acquisition over the intended follow-up period, and investigators may wish to understand how much certain types of predictors, such as behavioural factors, contribute to overall predictiveness. Time-to-event outcomes such as time to HIV acquisition are often subject to right censoring, and existing methods for assessing variable importance are typically not intended to be used in this setting. We describe a broad class of algorithm-agnostic variable importance measures for prediction in the context of survival data. We propose a nonparametric efficient estimation procedure that incorporates flexible learning of nuisance parameters, yields asymptotically valid inference and enjoys double robustness. We assess the performance of our proposed procedure via numerical simulations and analyse data from the HVTN 702 vaccine trial to inform enrolment strategies for future HIV vaccine trials.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP
    Francesco Prendin
    Jacopo Pavan
    Giacomo Cappon
    Simone Del Favero
    Giovanni Sparacino
    Andrea Facchinetti
    Scientific Reports, 13
  • [42] The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP
    Prendin, Francesco
    Pavan, Jacopo
    Cappon, Giacomo
    Del Favero, Simone
    Sparacino, Giovanni
    Facchinetti, Andrea
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] Estimating feature importance in circuit network using machine learning
    Nie, Tingyuan
    Zhao, Mingzhi
    Zhu, Zuyuan
    Zhao, Kun
    Wang, Zhenhao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 31233 - 31249
  • [44] The Importance of Forecasting in Industrial Enterprise Management Using Machine Learning
    A. V. Vorobev
    V. A. Kudinov
    Scientific and Technical Information Processing, 2022, 49 : 393 - 398
  • [45] The Importance of Forecasting in Industrial Enterprise Management Using Machine Learning
    Vorobev, A. V.
    Kudinov, V. A.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2022, 49 (05) : 393 - 398
  • [46] Estimating feature importance in circuit network using machine learning
    Tingyuan Nie
    Mingzhi Zhao
    Zuyuan Zhu
    Kun Zhao
    Zhenhao Wang
    Multimedia Tools and Applications, 2024, 83 : 31233 - 31249
  • [47] Quantitative analysis of engine parameters of a variable compression ratio CNG engine using machine learning
    Sahoo, Sridhar
    Kumar, Valluri Naga Sai Pavan
    Srivastava, Dhananjay Kumar
    FUEL, 2022, 311
  • [48] Vibration Analysis of Shaft Misalignment Using Machine Learning Approach under Variable Load Conditions
    Umbrajkaar, A. M.
    Krishnamoorthy, A.
    Dhumale, R. B.
    SHOCK AND VIBRATION, 2020, 2020
  • [49] Survival analysis for pediatric heart transplant patients using a novel machine learning algorithm: A UNOS analysis
    Ashfaq, Awais
    Gray, Geoffrey M.
    Carapelluci, Jennifer
    Amankwah, Ernest K.
    Rehman, Mohamed
    Puchalski, Michael
    Smith, Andrew
    Quintessenza, James A.
    Laks, Jessica
    Ahumada, Luis M.
    Asante-Korang, Alfred
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2023, 42 (10): : 1341 - 1348
  • [50] Explaining machine learning models using entropic variable projection
    Bachoc, Francois
    Gamboa, Fabrice
    Halford, Max
    Loubes, Jean-Michel
    Risser, Laurent
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2023, 12 (03)