Almost Weakly (τ1, τ2)-continuous Functions

被引:0
|
作者
Khampakdee, Jeeranunt [1 ]
Sompong, Supunnee [2 ]
Boonpok, Chawalit [1 ]
机构
[1] Mahasarakham Univ, Fac Sci, Dept Math, Math & Appl Math Res Unit, Maha Sarakham 44150, Thailand
[2] Sakon Nakhon Rajbhat Univ, Fac Sci & Technol, Dept Math & Stat, Sakon Nakhon 47000, Thailand
来源
关键词
tau 1 tau 2-open set; almost weakly (tau 1; tau 2)-continuous function; (TAU(1); SETS; CONTINUITY; 0(LAMBDA;
D O I
10.29020/nybg.ejpam.v18i1.5721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the concept of weakly (tau 1, tau 2)-continuous functions. Furthermore, several characterizations and some properties of almost weakly (tau 1, tau 2)-continuous functions are investigated.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Weakly semi ω-continuous functions
    Bani Melhem, Shefa A.
    Rawshdeh, Amani A.
    Al-Jarrah, Heyam H.
    Al-Zoubi, Khalid Y.
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 788 - 798
  • [32] On weakly (τ, m)-continuous functions
    Popa V.
    Noiri T.
    Rendiconti del Circolo Matematico di Palermo, 2002, 51 (2) : 295 - 316
  • [33] Almost (τ1, τ2 )-continuous multifunctions
    Khampakdee, Jeeranunt
    Sompong, Supannee
    Boonpok, Chawalit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1287 - 1292
  • [34] On the topological entropy of continuous and almost continuous functions
    Pawlak, Ryszard J.
    Loranty, Anna
    Bakowska, Anna
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (15) : 2022 - 2033
  • [35] MEASURABLE FUNCTIONS AND ALMOST CONTINUOUS-FUNCTIONS
    FREMLIN, DH
    MANUSCRIPTA MATHEMATICA, 1981, 33 (3-4) : 387 - 405
  • [36] Weakly quasi ( τ 1 , τ2)-continuous 2 )- continuous multifunctions
    Pue-on, Prapart
    Sompong, Supannee
    Boonpok, Chawalit
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1553 - 1564
  • [38] Between Strongly θ-continuous and Weakly Continuous Functions
    Al-Omari, Ahmad
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [39] Weakly Quasi (inverted perpendicular1, T2)-Continuous Functions
    Chiangpradit, Monchaya
    Sompong, Supannee
    Boonpok, Chawalit
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [40] BAIRE ORDER OF FUNCTIONS CONTINUOUS ALMOST EVERYWHERE .2.
    MAULDIN, RD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 51 (02) : 371 - 377