ArabFake: A Multitask Deep Learning Framework for Arabic Fake News Detection, Categorization, and Risk Prediction

被引:0
|
作者
Shehata, Ahmed Maher Khafaga [1 ]
Al-Suqri, Mohammed Nasser [1 ]
Osman, Nour Eldin Mohamed Elshaiekh [1 ]
Hamad, Faten [1 ,2 ]
Alhusaini, Yousuf Nasser [3 ]
Mahfouz, Ahmed [3 ,4 ]
机构
[1] Sultan Qaboos Univ, Informat Studies Dept, Seeb 123, Oman
[2] Univ Jordan, Lib & Informat Sci Dept, Amman, Jordan
[3] Arab Open Univ, Fac Comp Studies, Muscat 121, Oman
[4] Minia Univ, Comp Sci Dept, Al Minya 1596, Egypt
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Fake news; Social networking (online); COVID-19; Accuracy; Hate speech; Emojis; Linguistics; Feature extraction; Transformers; Data mining; Fake news detection; misinformation detection; Arabic language; OSNs;
D O I
10.1109/ACCESS.2024.3518204
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The spread of fake news among Arabic media including social media represents a great challenge to the integrity of information and the trust of the public in it. In this paper, we introduce a comprehensive deep-learning framework, named ArabFake, that goes beyond the binary classification on Arabic fake news detection. ArabFake, built over MARBERTv2 (a state-of-the-art model for multi-dialectal Arabic tweets), proficiently address the complexity of the Arabic language while performing three unified tasks which are fake news detection, content categorization and its risk assessment. The framework promotes efficiency and performance both by enabling multi-task learning through shared knowledge representation across tasks. In order to facilitate development and evaluation, we present the ArabFake Dataset consisting of 2,495 manually labelled news items with labels that are verified by experts regarding fake news categories and risk levels. ArabFake demonstrates robust performance, achieving an F1 score of 94.12% for fake news detection, 84.92% for categorization, and 88.91% for risk zone assessment, highlighting its reliability and effectiveness across multiple tasks. We improve interpretability and extract insight into manipulative techniques by integrating valence scoring as part of the framework that emphasizes misleading linguistic cues used to disseminate fake news within the produced image. The results show that ArabFake is a holistic Arabic fake news detection framework that has practical implications on news organizations and fact checking projects.
引用
收藏
页码:191345 / 191360
页数:16
相关论文
共 50 条
  • [31] A Comprehensive Review on Fake News Detection With Deep Learning
    Mridha, M. F.
    Keya, Ashfia Jannat
    Hamid, Md. Abdul
    Monowar, Muhammad Mostafa
    Rahman, Md. Saifur
    IEEE ACCESS, 2021, 9 : 156151 - 156170
  • [32] A deep learning approach for automatic detection of fake news
    Saikh, Tanik
    De, Arkadipta
    Ekbal, Asif
    Bhattacharyya, Pushpak
    arXiv, 2020,
  • [33] Deep learning for fake news detection: A comprehensive survey
    Hu, Linmei
    Wei, Siqi
    Zhao, Ziwang
    Wu, Bin
    AI OPEN, 2022, 3 : 133 - 155
  • [34] A Deep Transfer Learning Approach for Fake News Detection
    Saikh, Tanik
    Haripriya, B.
    Ekbal, Asif
    Bhattacharyya, Pushpak
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [35] AI and Fake News: A Conceptual Framework for Fake News Detection
    Ameli, Leila
    Chowdhury, Md Shah Alam
    Farid, Farnaz
    Bello, Abubakar
    Sabrina, Fariza
    Maurushat, Alana
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON CYBER SECURITY, CSW 2022, 2022, : 34 - 39
  • [36] A Deep Learning Framework for Detection of COVID-19 Fake News on Social Media Platforms
    Tashtoush, Yahya
    Alrababah, Balqis
    Darwish, Omar
    Maabreh, Majdi
    Alsaedi, Nasser
    DATA, 2022, 7 (05)
  • [37] Fake News Detection Using Machine Learning and Deep Learning Methods
    Saeed, Ammar
    Al Solami, Eesa
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (02): : 2079 - 2096
  • [38] Multitask Fake News Detection in Arabic Language using AraELECTRA model: COVID-19 Case Study
    Sellami, Meriem
    Hadrouk, Ramzi
    Chelghoum, Sofiane
    Badache, Ramzi
    Kamel, Nadjet
    Lakhfif, Abdelazziz
    2024 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR DISASTER MANAGEMENT, ICT-DM 2024, 2024,
  • [39] Fake News Detection Using Hybrid Deep Learning Method
    Yadav A.K.
    Kumar S.
    Kumar D.
    Kumar L.
    Kumar K.
    Maurya S.K.
    Kumar M.
    Yadav D.
    SN Computer Science, 4 (6)
  • [40] An Enhanced Fake News Detection System With Fuzzy Deep Learning
    Xu, Cheng
    Kechadi, M-Tahar
    IEEE ACCESS, 2024, 12 : 88006 - 88021