β-Lactamase diversity in Pseudomonas aeruginosa

被引:0
|
作者
Mack, Andrew R. [1 ,2 ,10 ]
Hujer, Andrea M. [2 ,3 ]
Mojica, Maria F. [1 ,2 ,4 ]
Taracila, Magdalena A. [2 ,3 ]
Feldgarden, Michael [5 ]
Haft, Daniel H. [5 ]
Klimke, William [5 ]
Prasad, Arjun B. [5 ]
Bonomo, Robert A. [1 ,2 ,3 ,4 ,6 ,7 ,8 ,9 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Mol Biol & Microbiol, Cleveland, OH 44106 USA
[2] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Res Serv, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Sch Med, Dept Med, Cleveland, OH 44106 USA
[4] CWRU Cleveland VAMC Ctr Antimicrobial Resistance &, Cleveland, OH 44106 USA
[5] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD USA
[6] Case Western Reserve Univ, Sch Med, Dept Biochem, Cleveland, OH 44106 USA
[7] Case Western Reserve Univ, Sch Med, Dept Pharmacol, Cleveland, OH 44106 USA
[8] Case Western Reserve Univ, Sch Med, Dept Prote & Bioinformat, Cleveland, OH 44106 USA
[9] Louis Stokes Cleveland Dept Vet Affairs Med Ctr, Cleveland, OH 44106 USA
[10] Univ Washington, Dept Lab Med & Pathol, Seattle, WA USA
基金
美国国家卫生研究院;
关键词
beta-lactamases; antibiotic resistance; Pseudomonas aeruginosa; bioinformatics; BY-GENE APPROACH; AVIBACTAM; CONSERVATION; INHIBITION; RESISTANCE; MECHANISM; MLST;
D O I
10.1128/aac.00785-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa is a clinically important Gram-negative pathogen responsible for a wide variety of serious nosocomial and community-acquired infections. Antibiotic resistance is a major concern, as this organism has a wide variety of resistance mechanisms, including chromosomal class C (bla(PDC)) and D (bla(OXA-50) family) beta-lactamases, efflux pumps, porin channels, and the ability to readily acquire additional beta-lactamases. Surveillance studies can reveal the diversity and distribution of beta-lactamase alleles but are difficult and expensive to conduct. Herein, we apply a novel approach, using publicly available data derived from whole genome sequences, to explore the diversity and distribution of beta-lactamase alleles across 30,452 P. aeruginosa isolates. The most common alleles were bla(PDC-3), bla(PDC-5), bla(PDC-8), bla(OXA-488), bla(OXA-50), and bla(OXA-486). Interestingly, only 43.6% of assigned bla(PDC) alleles were encountered, and the 10 most common bla(PDC) and intrinsic bla(OXA) alleles represent approximately 75% of their respective total alleles, while many other assigned alleles were extremely uncommon. As anticipated, differences were observed over time and geography. Surprisingly, more distinct unassigned alleles were encountered than distinct assigned alleles. Understanding the diversity and distribution of beta-lactamase alleles helps to prioritize variants for further research, select targets for drug development, and may aid in selecting therapies for a given infection.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] SPECIFICITY OF BETA-LACTAMASE INDUCTION IN PSEUDOMONAS-AERUGINOSA
    DALHOFF, A
    CULLMANN, W
    JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 1984, 14 (04) : 349 - 357
  • [22] INDUCTION OF BETA-LACTAMASE ACTIVITY IN PSEUDOMONAS-AERUGINOSA
    NORDSTROM, K
    SYKES, RB
    JOURNAL OF GENERAL MICROBIOLOGY, 1972, 73 (DEC): : R10 - R11
  • [23] ampG Gene of Pseudomonas aeruginosa and Its Role in β-Lactamase Expression
    Zhang, Ying
    Bao, Qiyu
    Gagnon, Luc A.
    Huletsky, Ann
    Oliver, Antonio
    Jin, Shouguang
    Langaee, Taimour
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2010, 54 (11) : 4772 - 4779
  • [24] β-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa
    Li, XZ
    Zhang, L
    Srikumar, R
    Poole, K
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (02) : 399 - 403
  • [25] The effect of cheats on siderophore diversity in Pseudomonas aeruginosa
    Stilwell, Peter
    Lowe, Chris
    Buckling, Angus
    JOURNAL OF EVOLUTIONARY BIOLOGY, 2018, 31 (09) : 1330 - 1339
  • [26] Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide
    Lam, Joseph S.
    Taylor, Veronique L.
    Islam, Salim T.
    Hao, Youai
    Kocincova, Dana
    FRONTIERS IN MICROBIOLOGY, 2011, 2
  • [27] Global genomic diversity of Pseudomonas aeruginosa in bronchiectasis
    Harrington, N. E.
    Kottara, A.
    Cagney, K.
    Shepherd, M. J.
    Grimsey, E. M.
    Fu, T.
    Hull, R. C.
    Chong, C. E.
    Baker, K. S.
    Childs, D. Z.
    Fothergill, J. L.
    Chalmers, J. D.
    Brockhurst, M. A.
    Paterson, S.
    JOURNAL OF INFECTION, 2024, 89 (05)
  • [28] Stability of FR264205 against AmpC β-lactamase of Pseudomonas aeruginosa
    Takeda, Shinobu
    Ishii, Yoshikazu
    Hatano, Kazuo
    Tateda, Kazuhiro
    Yamaguchi, Keizo
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2007, 30 (05) : 443 - 445
  • [29] Incidence of metallo beta lactamase producing Pseudomonas aeruginosa in ICU patients
    Varaiya, Ami
    Kulkarni, Nikhil
    Kulkarni, Manasi
    Bhalekar, Pallavi
    Dogra, Jyotsana
    INDIAN JOURNAL OF MEDICAL RESEARCH, 2008, 127 (04) : 398 - 402
  • [30] BIOCHEMICAL PROPERTIES OF A CEPHALOSPORIN BETA LACTAMASE FROM PSEUDOMONAS-AERUGINOSA
    YAGINUMA, S
    SAWAI, T
    ONO, H
    YAMAGISHI, S
    MITSUHASHI, S
    JAPANESE JOURNAL OF MICROBIOLOGY, 1973, 17 (02): : 141 - 149