L2A: Learning Affinity From Attention for Weakly Supervised Continual Semantic Segmentation

被引:0
|
作者
Liu, Hao [1 ,2 ]
Zhou, Yong [1 ]
Liu, Bing [1 ]
Yan, Ming [2 ,3 ]
Zhou, Joey Tianyi [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
[2] ASTAR, Ctr Frontier AI Res CFAR, Singapore 138632, Singapore
[3] ASTAR, Inst High Performance Comp IHPC, Singapore 138632, Singapore
基金
中国国家自然科学基金;
关键词
Semantics; Semantic segmentation; Annotations; Transformers; Continuing education; Computational modeling; Circuits and systems; Affinity from attention; weakly supervised continual semantic segmentation; stability-plasticity dilemma; catastrophic forgetting; NETWORKS;
D O I
10.1109/TCSVT.2024.3462946
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Despite significant advances in continual semantic segmentation (CSS), they still rely on the pixel-level annotation to train models, which is time-consuming and labor-intensive. Continual learning from image-level labels is an emerging scheme in continual semantic segmentation to reduce the annotation cost. However, the incomplete and coarse pseudo-labels are insufficient to train a model to maintain a balance between stability and plasticity. To solve these issues, we propose a novel end-to-end framework based on Transformer, called L2A, for Weakly Supervised Continual Semantic Segmentation (WSCSS). In particular, to generate reliable annotations from the image-level supervision, we introduce a semantic affinity from multi-head self-attention (SA-MHSA) module to capture the semantic relationships among adjacent image coordinates. Subsequently, this acquired semantic affinity is employed to refine the initial pseudo labels of new classes trained with the image-level annotations. Furthermore, to minimize catastrophic forgetting, we propose a semantic drift compensation (SDC) strategy to optimize the pseudo-label generation process, which can effectively improve the alignment of object boundaries across both new and old categories. Comprehensive experiments conducted on the PASCAL VOC 2012 and COCO datasets demonstrate the superiority of our framework in existing WSCSS scenarios and a newly proposed challenge protocol, as well as remains competitive compared to the pixel-level supervised CSS methods.
引用
收藏
页码:315 / 328
页数:14
相关论文
共 50 条
  • [31] Learning graph structures with transformer for weakly supervised semantic segmentation
    Sun, Wanchun
    Feng, Xin
    Ma, Hui
    Liu, Jingyao
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (06) : 7511 - 7521
  • [32] Weakly-Supervised Semantic Segmentation with Mean Teacher Learning
    Tan, Li
    Luo, WenFeng
    Yang, Meng
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 324 - 335
  • [33] Counterfactual learning and saliency augmentation for weakly supervised semantic segmentation
    Ding, Xiangfu
    Shao, Youjia
    Tian, Na
    Wang, Li
    Zhao, Wencang
    IMAGE AND VISION COMPUTING, 2025, 158
  • [34] Learning graph structures with transformer for weakly supervised semantic segmentation
    Wanchun Sun
    Xin Feng
    Hui Ma
    Jingyao Liu
    Complex & Intelligent Systems, 2023, 9 : 7511 - 7521
  • [35] Learning Visual Words for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Du, Bo
    Wu, Chen
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 982 - 988
  • [36] Joint Learning of Saliency Detection and Weakly Supervised Semantic Segmentation
    Zeng, Yu
    Zhuge, Yunzhi
    Lu, Huchuan
    Zhang, Lihe
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7222 - 7232
  • [37] Weakly Supervised Semantic Segmentation Via Progressive Patch Learning
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Zhou, Yu
    Wei, Xiaolin
    Ma, Lin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1686 - 1699
  • [38] Weakly Supervised Semantic Segmentation Learning on UAV Video Sequences
    Blaga, Bianca-Cerasela-Zelia
    Nedevschi, Sergiu
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 731 - 735
  • [39] Weakly-Supervised Semantic Segmentation by Learning Label Uncertainty
    Neven, Robby
    Neven, Davy
    De Brabandere, Bert
    Proesmans, Marc
    Goedeme, Toon
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1678 - 1686
  • [40] Continual Barlow Twins: Continual Self-Supervised Learning for Remote Sensing Semantic Segmentation
    Marsocci, Valerio
    Scardapane, Simone
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5049 - 5060