Pediatric brain tumor classification using deep learning on MR images with age fusion

被引:0
|
作者
Tampu, Iulian Emil [1 ,2 ]
Bianchessi, Tamara [1 ,2 ,3 ]
Blystad, Ida [2 ,4 ,5 ]
Lundberg, Peter [2 ,6 ,7 ]
Nyman, Per [2 ,8 ,9 ]
Eklund, Anders [1 ,2 ,10 ]
Haj-Hosseini, Neda [1 ,2 ]
机构
[1] Linkoping Univ, Dept Biomed Engn, Campus US, S-58185 Linkoping, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat, Linkoping, Sweden
[3] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[4] Linkoping Univ, Dept Radiol, Linkoping, Sweden
[5] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[6] Linkoping Univ, Dept Radiat Phys, Linkoping, Sweden
[7] Linkoping Univ, Dept Med & Hlth Sci, Linkoping, Sweden
[8] Linkoping Univ, Crown Princess Victor Childrens Hosp, Linkoping, Sweden
[9] Linkoping Univ, Dept Hlth Med & Caring Sci, Linkoping, Sweden
[10] Linkoping Univ, Dept Comp & Informat Sci, Div Stat & Machine Learning, Linkoping, Sweden
关键词
age; data fusion; deep learning; MRI; pediatric brain tumor; CHILDREN;
D O I
10.1093/noajnl/vdae205
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors (PBT) in magnetic resonance (MR) data.Methods A subset of the "Children's Brain Tumor Network" dataset was retrospectively used (n = 178 subjects, female = 72, male = 102, NA = 4, age range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n = 84), ependymoma (n = 32), and medulloblastoma (n = 62). T1w post-contrast (n = 94 subjects), T2w (n = 160 subjects), and apparent diffusion coefficient (ADC: n = 66 subjects) MR sequences were used separately. Two deep learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and 2 pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class-activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA).Results The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (Matthews correlation coefficient [MCC]: 0.77 +/- 0.14, Accuracy: 0.87 +/- 0.08), followed by models trained on T2w (MCC: 0.58 +/- 0.11, Accuracy: 0.73 +/- 0.08) and T1w post-contrast (MCC: 0.41 +/- 0.11, Accuracy: 0.62 +/- 0.08) data. Age fusion marginally improved the model's performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models' attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training.Conclusion Classification of PBT on MR images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which radiologists use for the clinical classification of these tumors.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep Transfer Learning Approaches in Performance Analysis of Brain Tumor Classification Using MRI Images
    Srinivas, Chetana
    Prasad, Nandini K. S.
    Zakariah, Mohammed
    Alothaibi, Yousef Ajmi
    Shaukat, Kamran
    Partibane, B.
    Awal, Halifa
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [32] MR Images, Brain Lesions, and Deep Learning
    Castillo, Darwin
    Lakshminarayanan, Vasudevan
    Rodriguez-Alvarez, Maria Jose
    APPLIED SCIENCES-BASEL, 2021, 11 (04): : 1 - 41
  • [33] Brain Pathology Classification of MR Images Using Machine Learning Techniques
    Ramaha, Nehad T. A.
    Mahmood, Ruaa M.
    Hameed, Alaa Ali
    Fitriyani, Norma Latif
    Alfian, Ganjar
    Syafrudin, Muhammad
    COMPUTERS, 2023, 12 (08)
  • [34] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [35] Brain Tumor Classification with Multimodal MR and Pathology Images
    Ma, Xiao
    Jia, Fucang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 343 - 352
  • [36] Deep Learning for Brain Tumor Classification
    Paul, Justin S.
    Plassard, Andrew J.
    Landman, Bennett A.
    Fabbri, Daniel
    MEDICAL IMAGING 2017: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2017, 10137
  • [37] Brain Tumors Classification for MR images based on Attention Guided Deep Learning Model
    Zhang, Yuhao
    Wang, Shuhang
    Wu, Haoxiang
    Hu, Kejia
    Ji, Shufan
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3233 - 3236
  • [38] A robust hybrid fusion segmentation approach for automated tumor diagnosis and classification in brain MR images
    Devi, R. Sindhiya
    Perumal, B.
    Rajasekaran, M. Pallikonda
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 6063 - 6078
  • [39] Classification of Brain Tumor using PCA-RF in MR Neurological Images
    Saraswathi, Vishlavath
    Gupta, Deep
    2019 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2019, : 475 - 478
  • [40] Classification of Brain Tumor using Hybrid Deep Learning Approach
    Singh, Manu
    Shrimali, Vibhakar
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2022, 13 (02): : 308 - 327