This paper is devoted to the growth of high-order Sobolev norms of solutions in time in the context of the Hartree equation in 2- or 3-dimensional spaces. By combining modified energies with appropriate Strichartz estimates, we derive polynomial-time bounds for the Hs(s >= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(s\ge 2)$$\end{document} norms. Compared to the bound in 2 dimensions due to harmonic analysis techniques in the work (Sohinger in Discr Cont Dyn A 32(10):3733-3771, 2012), we obtain a more refined growth result of Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s$$\end{document} norm for s <= 21/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \le 21/5$$\end{document}.
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
Haus, Emanuele
Procesi, Michela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
机构:
Pontificia Univ Catolica Rio de Janeiro, Dept Math, Rua Marques Sao Vicente 225,Cardeal Leme 862, Rio De Janeiro, BrazilPontificia Univ Catolica Rio de Janeiro, Dept Math, Rua Marques Sao Vicente 225,Cardeal Leme 862, Rio De Janeiro, Brazil
机构:
St Petersburg State Univ, St Petersburg, Russia
Russian Acad Sci, St Petersburg Dept Steklov Math Inst, St Petersburg, RussiaSt Petersburg State Univ, St Petersburg, Russia
Bessonov, Roman V.
Denisov, Sergey a.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Math, Madison, WI USASt Petersburg State Univ, St Petersburg, Russia