On the growth of Sobolev norms for Hartree equation

被引:0
|
作者
Shi, Qihong [1 ]
Sun, Yuting [1 ]
Saanouni, Tarek [2 ]
机构
[1] Lanzhou Univ Technol, Dept Math, Lanzhou 730050, Peoples R China
[2] Qassim Univ, Coll Sci, Dept Math, Buraydah 51452, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Hartree equation; Growth of Sobolev norms; Modified energies; Strichartz estimates; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP; ASYMPTOTIC-BEHAVIOR; SCATTERING; TIME; BOUNDS; UNIQUENESS; EXISTENCE; LIMIT;
D O I
10.1007/s00028-024-01043-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the growth of high-order Sobolev norms of solutions in time in the context of the Hartree equation in 2- or 3-dimensional spaces. By combining modified energies with appropriate Strichartz estimates, we derive polynomial-time bounds for the Hs(s >= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s(s\ge 2)$$\end{document} norms. Compared to the bound in 2 dimensions due to harmonic analysis techniques in the work (Sohinger in Discr Cont Dyn A 32(10):3733-3771, 2012), we obtain a more refined growth result of Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>s$$\end{document} norm for s <= 21/5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \le 21/5$$\end{document}.
引用
收藏
页数:24
相关论文
共 50 条