Zinc-regulated hard carbon as a sodium-ion battery anode material

被引:0
|
作者
Song, Zhenqi [1 ,2 ]
Ma, Yanjiao [3 ]
Wang, Ke [1 ,2 ]
Liu, Chengyu [1 ,2 ]
Wu, Aojie [1 ,2 ]
Cheng, Xinbing [1 ,2 ]
Wang, Tao [1 ,2 ]
Wang, Faxing [1 ,2 ]
Ma, Yuan [1 ,2 ]
Wu, Yuping [1 ,2 ]
机构
[1] Southeast Univ, Key Lab Energy Thermal Convers, Sch Energy & Environm, Minist Educ,Confucius Energy Storage Lab, Nanjing 211189, Peoples R China
[2] Southeast Univ, Z Energy Storage Ctr, Nanjing 211189, Peoples R China
[3] Nanjing Normal Univ, Sch Energy & Mech Engn, Nanjing 210023, Peoples R China
关键词
Sodium-ion batteries; Hard carbon; Microporous; Zinc-regulated; Initial coulomb efficiency; ENERGY-STORAGE;
D O I
10.1016/j.jpowsour.2025.236798
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to their excellent stability and low cost, hard carbon (HC) materials have gained significant attention as anode materials in sodium-ion batteries (SIBs). However, the low initial Coulomb efficiency (ICE) and reversible capacity of HC limit its practical application. To address this issue, this study successfully prepared zincregulated HC (Zn-HC) with a rich microporous structure, significantly enhancing its sodium-ion storage performance. Electrochemical tests showed that Zn-HC exhibited high reversible capacity (386 mAh g-1 at 1.0 A g-1) and ICE (73.1 %). In-situ Raman spectroscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique revealed that sodium-ion storage in Zn-HC occurs primarily through surface adsorption and intercalation/pore filling processes. Density functional theory (DFT) calculations further confirmed that the increased interlayer spacing and the introduction of C=O functional groups enhance sodiumion storage capacity. This study provides important insights for the design of high-performance anode materials for SIBs with superior electrochemical properties.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery
    Cheng, Hongkuan
    Tang, ZheRen
    Luo, Xingzhang
    Zheng, Zheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 777
  • [32] A New Porous Metallic Carbon Allotrope with Interlocking Pentagons for Sodium-Ion Battery Anode Material
    Ni, Dongyuan
    Guo, Yaguang
    Shen, Yupeng
    Wang, Qian
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (06)
  • [33] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [34] Synthesis of Hard Carbon as Anode Material for Lithium Ion Battery
    Khosravi, M.
    Bashirpour, N.
    Nematpour, F.
    ULTRAFINE GRAINED AND NANO-STRUCTURED MATERIALS IV, 2014, 829 : 922 - 926
  • [35] Towards a widely operate temperature sodium-ion battery via a new zinc phosphate anode material
    Chen, Xinyao
    Xu, Zhenming
    Liu, Yao
    Li, Guodong
    Zhao, Shaoyuan
    Zhang, Xiue
    Wang, Yonggang
    Cao, Yongjie
    Wang, Congxiao
    Xia, Yongyao
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [36] Insights into the electrochemical properties of bagasse-derived hard carbon anode materials for sodium-ion battery
    Bharat Verma
    Hari Raj
    Harsha Rajput
    Anjan Sil
    Ionics, 2023, 29 : 5205 - 5216
  • [37] Sustainable Fabrication of a Practical Hard Carbon Anode for a Sodium-Ion Battery with Unprecedented Long Cycle Life
    Song, Ziqing
    Li, Feng
    Mao, Liyuan
    Lin, Wei
    Zheng, Lituo
    Huang, Yiyin
    Wei, Mingdeng
    Hong, Zhensheng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (41) : 15020 - 15030
  • [38] Temperature-regulated biomass-derived hard carbon as a superior anode for sodium-ion batteries
    Li, Rong-Rong
    He, Xiang-Xi
    Yang, Zhuo
    Liu, Xiao-Hao
    Qiao, Yun
    Xu, Li
    Li, Li
    Chou, Shu-Lei
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (20) : 7595 - 7605
  • [39] Experimental and theoretical investigation on boron, phosphorus dual doped hard carbon as anode for sodium-ion battery
    Mahato, Sanchayan
    Das, Atish
    Biswas, Koushik
    JOURNAL OF ENERGY STORAGE, 2024, 104
  • [40] Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery
    Che, Haiying
    Liu, Jing
    Wang, Hong
    Wang, Xiaoping
    Zhang, Sheng S.
    Liao, Xiao-Zhen
    Ma, Zi-Feng
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 83 : 20 - 23