A Weakly Supervised Semantic Segmentation Method Based on Improved Conformer

被引:0
|
作者
Shen, Xueli [1 ]
Wang, Meng [1 ]
机构
[1] Liaoning Tech Univ, Sch Software, Huludao 125105, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 03期
关键词
WSSS; CAM; transformer; CNN; multi-scale feature extraction; lightweight;
D O I
10.32604/cmc.2025.05914
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of Weakly Supervised Semantic Segmentation (WSSS), methods based on image-level annotation face challenges in accurately capturing objects of varying sizes, lacking sensitivity to image details, and having high computational costs. To address these issues, we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs, proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer. In the Convolution Neural Network (CNN) branch, a cross-scale feature integration convolution module is designed, incorporating multi-receptive field convolution layers to enhance the model's ability to capture long-range dependencies and improve sensitivity to multi-scale objects. In the Vision Transformer (ViT) branch, an efficient multi-head self-attention module is developed, reducing unnecessary computation through spatial compression and feature partitioning, thereby improving overall network efficiency. Finally, a multi-feature coupling module is introduced to complement the features generated by both branches. This design retains the strength of Convolution Neural Network in extracting local details while harnessing the strength of Vision Transformer to capture comprehensive global features. Experimental results show that the mean Intersection over Union of the image segmentation results of the proposed method on the validation and test sets of the PASCAL VOC 2012 datasets are improved by 2.9% and 3.6%, respectively, over the TransCAM algorithm. Besides, the improved model demonstrates a 1.3% increase of the mean Intersections over Union on the COCO 2014 datasets. Additionally, the number of parameters and the floating-point operations are reduced by 16.2% and 12.9%. However, the proposed method still has limitations of poor performance when dealing with complex scenarios. There is a need for further enhancing the performance of this method to address this issue.
引用
收藏
页码:4631 / 4647
页数:17
相关论文
共 50 条
  • [21] A Weakly-Supervised Approach for Semantic Segmentation
    Feng, Yanqing
    Wang, Lunwen
    PROCEEDINGS OF 2019 IEEE 3RD INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2019), 2019, : 2311 - 2314
  • [22] WEAKLY SUPERVISED SEMANTIC SEGMENTATION WITH SUPERPIXEL EMBEDDING
    Xing, Frank Z.
    Cambria, Erik
    Huang, Win-Bin
    Xu, Yang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1269 - 1273
  • [23] Weakly Supervised Semantic Segmentation of Satellite Images
    Nivaggioli, Adrien
    Randrianarivo, Hicham
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [24] Weakly Supervised Semantic Segmentation for Social Images
    Zhang, Wei
    Zeng, Sheng
    Wang, Dequan
    Xue, Xiangyang
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 2718 - 2726
  • [25] Complementary Patch for Weakly Supervised Semantic Segmentation
    Zhang, Fei
    Gu, Chaochen
    Zhang, Chenyue
    Dai, Yuchao
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7222 - 7231
  • [26] Weakly Supervised Semantic Segmentation with a Multiscale Model
    Wang, Shuo
    Wang, Yizhou
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (03) : 308 - 312
  • [27] Adversarial Decoupling for Weakly Supervised Semantic Segmentation
    Sun, Guoying
    Yang, Meng
    Luo, Wenfeng
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 188 - 200
  • [28] Survey of Weakly Supervised Semantic Segmentation Methods
    Lu, Zheng
    Chen, Dali
    Xue, Dingyu
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1176 - 1180
  • [29] WegFormer : Transformers for weakly supervised semantic segmentation
    Liu, Chunmeng
    Li, Guangyao
    EXPERT SYSTEMS, 2024, 41 (03)
  • [30] Semantic-Aware Superpixel for Weakly Supervised Semantic Segmentation
    Kim, Sangtae
    Park, Daeyoung
    Shim, Byonghyo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 1142 - 1150