Microsatellite Markers Determine the Genetic Structure and Diversity of Landraces of Quinoa from Ayacucho, Peru

被引:0
|
作者
de la Cruz, German [1 ]
Saldana, Carla L. [2 ]
Menendez, Francisco [3 ,4 ]
Neyra, Edgar [5 ,6 ]
Arbizu, Carlos I. [7 ]
机构
[1] Univ Nacl San Cristobal Huamanga, Lab Genet & Biotecnol Vegetal, Portal Constituc 57, Ayacucho 05001, Peru
[2] Univ Nacl Toribio Rodriguez Mendoza Amazonas, Inst Invest Ganaderia & Biotecnol, Cl Higos Urco 342, Chachapoyas 01001, Amazonas, Peru
[3] Penn State Univ, Dept Plant Sci, University Pk, PA 16802 USA
[4] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[5] Univ Peruana Cayetano Heredia UPCH, Fac Ciencias Ingn, Unidad Genom, Ave Honorio Delgado 430, Lima 15102, Peru
[6] Univ Peruana Cayetano Heredia UPCH, Fac Med, Ave Honorio Delgado 430, Lima 15102, Peru
[7] Univ Nacl Toribio Rodriguez Mendoza Amazonas UNTRM, Fac Ingn & Ciencias Agr, Cl Higos Urco 342, Chachapoyas 01001, Amazonas, Peru
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 03期
关键词
Andean crop; molecular markers; SSR; germplasm; CHENOPODIUM-QUINOA; WILLD; ACCESSIONS; GERMPLASM; PACKAGE; RAPD;
D O I
10.3390/agronomy15030611
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Quinoa (Chenopodium quinoa, Amaranthaceae) is a pseudocereal native to the Andes of South America that contains high protein content and adequate nutrient levels. Peru possesses an abundant morphological diversity of quinoas and is among the top producers and exporters worldwide of this precious crop. However, knowledge about the genetic and population components of quinoa from the Peruvian Andes is still limited. Here, we used 13 microsatellite markers to determine the genetic diversity and population structure of 105 landraces of quinoa cultivated in 11 provinces of Ayacucho, the southern Peruvian Andes. A total of 285 bands were manually scored, generating a 105 x 285 presence/absence data set. Principal coordinate analysis, similar to a dendrogram using the UPGMA clustering algorithm, showed that quinoa from Ayacucho is grouped into three clusters without a clear geographic component. Estimation of the genetic diversity indices was conducted considering the three populations (C1: south 1, C2: south 2, C3: north) determined by STRUCTURE analysis, showing mean expected heterozygosity was 0.08, which may be attributed to high rates of inbreeding and genetic drift, as Ayacucho suffered decades of sociopolitical violence, promoting the migration of farmers. The highest population divergence (FST) was exhibited for C2 and C3 (0.03), whereas the lowest was for C1 and C3 (0.02). Analysis of molecular variance revealed the greatest variation within populations (80.07%) and indicated that variability between populations is 19.93%. Microsatellite markers were effective; however, more studies of the genetic components of quinoa from other Peruvian Andean localities are still needed. We expect that this work will help pave the way towards the development of modern breeding programs of quinoa in Peru, with accurate strategies for the conservation of this nutritious crop.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Genetic Diversity and Relationships of Wheat Landraces from Oman Investigated with SSR Markers
    P. Zhang
    S. Dreisigacker
    A. Buerkert
    S. Alkhanjari
    A. E. Melchinger
    M. L. Warburton
    Genetic Resources and Crop Evolution, 2006, 53 : 1351 - 1360
  • [42] Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers
    Zhang, P.
    Dreisigacker, S.
    Buerkert, A.
    Alkhanjari, S.
    Melchinger, A. E.
    Warburton, M. L.
    GENETIC RESOURCES AND CROP EVOLUTION, 2006, 53 (07) : 1351 - 1360
  • [43] Bulk genetic characterization of Ghanaian maize landraces using microsatellite markers
    Oppong, Allen
    Bedoya, Claudia A.
    Ewool, Manfred B.
    Asante, Maxwell D.
    Thompson, Ruth N.
    Adu-Dapaah, Hans
    Lamptey, Joseph N. L.
    Ofori, Kwadwo
    Offei, Samuel K.
    Warburton, Marilyn L.
    MAYDICA, 2014, 59 (1-4): : 1 - 8
  • [44] Genetic diversity of apple landraces from VIR collection based on SSR markers
    Shlyavas, A., V
    Trifonova, A. A.
    Shamshin, I. N.
    Boris, K., V
    Kudryavtsev, A. M.
    XV EUCARPIA SYMPOSIUM ON FRUIT BREEDING AND GENETICS, 2021, 1307 : 105 - 114
  • [45] From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers
    Rufo, Ruben
    Alvaro, Fanny
    Royo, Conxita
    Miguel Soriano, Jose
    PLOS ONE, 2019, 14 (07):
  • [46] Genetic diversity of Colombian sheep by microsatellite markers
    Ocampo, Ricardo
    Cardona, Henry
    Martinez, Rodrigo
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2016, 76 (01): : 40 - 47
  • [47] DETECTION OF GENETIC DIVERSITY OF TRITICALE BY MICROSATELLITE MARKERS
    Trebichalsky, Andrej
    Balazova, Zelmira
    Galova, Zdenka
    Chnapek, Milan
    Tomka, Marian
    JOURNAL OF MICROBIOLOGY BIOTECHNOLOGY AND FOOD SCIENCES, 2013, 2 : 1898 - 1906
  • [48] Genetic Diversity and Population Structure of Collard Landraces
    Pelc, Sandra E.
    Couillard, David M.
    Stansell, Zachary J.
    Farnham, Mark W.
    HORTSCIENCE, 2015, 50 (09) : S40 - S41
  • [49] Genetic Diversity and Population Structure of Arabian Horse Populations Using Microsatellite Markers
    Machmoum, Mohamed
    Boujenane, Ismail
    Azelhak, Rabiaa
    Badaoui, Bouabid
    Petit, Daniel
    Piro, Mohammed
    JOURNAL OF EQUINE VETERINARY SCIENCE, 2020, 93
  • [50] Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers
    Rashid, Muhammad Abdur
    Manjula, Prabuddha
    Faruque, Shakila
    Bhuiyan, A. K. Fazlul Haque
    Seo, Dongwon
    Alam, Jahangir
    Lee, Jun Heon
    Bhuiyan, Mohammad Shamsul Alam
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2020, 33 (11): : 1732 - 1740