Hierarchical Decoder with Parallel Transformer and CNN for Medical Image Segmentation

被引:0
|
作者
Li, Shijie [1 ]
Gong, Yu [1 ]
Xiang, Qingyuan [1 ]
Li, Zheng [1 ,2 ]
机构
[1] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Tianfu Engn Oriented Numercial Simulat & Software, Chengdu 610207, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; Hierarchical decoder; Attention mechanism; PLUS PLUS;
D O I
10.1007/978-981-97-8496-7_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the success of Transformers, hybrid Transformer and CNN methods gain considerable popularity in medical image segmentation. These methods utilize a hybrid architecture that combines Transformers and CNNs to fuse global and local information, supplemented by a pyramid structure to facilitate multi-scale interaction. However, they encounter two primary limitations: (i) Transformer struggle to capture complete global information due to the sliding window nature of the convolutional operator, and (ii) the pyramid structure within single decoder fails to provide sufficient multi-scale interaction necessary for restoring detailed features at higher levels. In this paper, we introduce the Hierarchical Decoder with Parallel Transformer and CNN (HiPar), a novel architecture designed to address these limitations. Firstly, we present a parallel structure of Transformer and CNN to maximize the capture of both global and local features. Subsequently, we propose a hierarchical decoder to model multi-scale information and progressively restore spatial details. Additionally, we incorporate lightweight components to enhance the efficiency of feature representation. Extensive experiments demonstrate that our HiPar achieves state-of-the-art results on three popular medical image segmentation benchmarks: Synapse, ACDC and GlaS.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 50 条
  • [21] TCI-UNet: transformer-CNN interactive module for medical image segmentation
    Bian, Xuan
    Wang, Guanglei
    Li, Yan
    Wang, Hongrui
    BIOMEDICAL OPTICS EXPRESS, 2023, 14 (11) : 5904 - 5920
  • [22] Multi-Scale Orthogonal Model CNN-Transformer for Medical Image Segmentation
    Zhou, Wuyi
    Zeng, Xianhua
    Zhou, Mingkun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (10)
  • [23] FTransCNN: Fusing Transformer and a CNN based on fuzzy logic for uncertain medical image segmentation
    Ding, Weiping
    Wang, Haipeng
    Huang, Jiashuang
    Ju, Hengrong
    Geng, Yu
    Lin, Chin-Teng
    Pedrycz, Witold
    INFORMATION FUSION, 2023, 99
  • [24] CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation
    Xie, Yutong
    Zhang, Jianpeng
    Shen, Chunhua
    Xia, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 171 - 180
  • [25] FAFuse: A Four-Axis Fusion framework of CNN and Transformer for medical image segmentation
    Xu, Shoukun
    Xiao, Dehao
    Yuan, Baohua
    Liu, Yi
    Wang, Xueyuan
    Li, Ning
    Shi, Lin
    Chen, Jialu
    Zhang, Ju-Xiao
    Wang, Yanhao
    Cao, Jianfeng
    Shao, Yeqin
    Jiang, Mingjie
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [26] Optimizing transformer-based network via advanced decoder design for medical image segmentation
    Yang, Weibin
    Dong, Zhiqi
    Xu, Mingyuan
    Xu, Longwei
    Geng, Dehua
    Li, Yusong
    Wang, Pengwei
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [27] Boundary-guided feature integration network with hierarchical transformer for medical image segmentation
    Fan Wang
    Bo Wang
    Multimedia Tools and Applications, 2024, 83 : 8955 - 8969
  • [28] H2Former: An Efficient Hierarchical Hybrid Transformer for Medical Image Segmentation
    He, Along
    Wang, Kai
    Li, Tao
    Du, Chengkun
    Xia, Shuang
    Fu, Huazhu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (09) : 2763 - 2775
  • [29] LATrans-Unet: Improving CNN-Transformer with Location Adaptive for Medical Image Segmentation
    Lin, Qiqin
    Yao, Junfeng
    Hong, Qingqi
    Cao, Xianpeng
    Zhou, Rongzhou
    Xie, Weixing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 223 - 234
  • [30] Semi-Supervised Medical Image Segmentation via Cross Teaching between CNN and Transformer
    Luo, Xiangde
    Hu, Minhao
    Song, Tao
    Wang, Guotai
    Zhang, Shaoting
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 820 - 833