In Operando Raman Spectroscopy Reveals Li-Ion Solvation in Lithium Metal Batteries

被引:0
|
作者
Huang, Dequan [1 ,2 ]
Zeng, Cuihong [1 ]
Liu, Menghao [1 ]
Chen, Xiaorong [1 ]
Li, Yahao [3 ]
Zou, Jinshuo [4 ]
Pan, Qichang [1 ]
Zheng, Fenghua [1 ]
Wang, Hongqiang [1 ]
Li, Qingyu [1 ]
Hu, Sijiang [1 ]
机构
[1] Guangxi Normal Univ, Sch Chem & Pharmaceut Sci, Guangxi Key Lab Low Carbon Energy Mat, Guangxi Sci & Technol Achievements Transformat Pil, Guilin 541004, Peoples R China
[2] Guilin Univ Aerosp Technol, Sch Automobile Engn, Guilin 541004, Peoples R China
[3] China Three Gorges Univ, Coll Elect Engn & New Energy, Hubei Prov Collaborat Innovat Ctr New Energy Micro, Yichang 443002, Peoples R China
[4] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide 5005, Australia
基金
中国国家自然科学基金;
关键词
lithium metal batteries; lithium dendrites; lithiophilic; Raman spectroscopy; SURFACE; ANODE;
D O I
10.1002/smll.202412259
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inhomogeneous lithium (Li) deposition and unstable solid electrolyte interphase are the main causes of short cycle life and safety issues in Li metal batteries (LMBs). Developing a 3D structured matrix current collector and novel electrolyte are feasible strategies to tackle these issues. Ether-based electrolytes are widely used in LMBs. However, a fundamental understanding of Li-ion coordination and solvent remains incomplete. Here, lithiophilic Ag-Cu mesh is designed as the current collector to boost rapid Li-ion flux and Li metal nucleation. Meanwhile, dimethoxyethane (DME)/dioxolane (DOL) are used as complex solvents to enable lower interfacial resistance. The solvation structures at the interfaces of different collectors with different electrolytes are investigated. By applying in operando Raman spectroscopy, it is demonstrated that bis(trifluoromethylsulfonyl)imide TFSI-and DME molecules are highly coordinated with Li+ compared with DOL molecules. Furthermore, lithiophilic 3D Ag-Cu mesh tunes Li+ solvation/desolvation, resulting in a uniform deposition. The Ag-Cu mesh/Li symmetric cells demonstrate long-term cycling life up to 1200 h and Coulombic efficiency of 98.6% over 200 cycles at 1 mA cm-2. The Ag-Cu mesh/Li||LiNi0.8Co0.1Mn0.1O2 cells exhibit an initial discharge capacity of 208.7 mAh g-1 at 1.0 C with a capacity retention of 76.1% after 500 cycles.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Operando Investigation of Silicon Anodes During Electrochemical Cycling in Li-ion Batteries
    Hapuarachchi, Sashini N. S.
    Jones, Michael W. M.
    Wasalathilake, Kimal C.
    Marriam, Ifra
    Nerkar, Jawahar Y.
    Kirby, Nigel
    Siriwardena, Dumindu P.
    Fernando, Joseph F. S.
    Golberg, Dmitri V.
    O'Mullane, Anthony P.
    Zheng, Jun-chao
    Yan, Cheng
    SMALL METHODS, 2024, 8 (07)
  • [42] In Operando Small-Angle Neutron Scattering (SANS) on Li-Ion Batteries
    Seidlmayer, Stefan
    Hattendorff, Johannes
    Buchberger, Irmgard
    Karge, Lukas
    Gasteiger, Hubert A.
    Gilles, Ralph
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) : A3116 - A3125
  • [43] Lithium-ion conduction in elastomeric binder in Li-ion batteries
    Kaneko, Mayumi
    Nakayama, Masanobu
    Wakihara, Masataka
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2007, 11 (08) : 1071 - 1076
  • [44] Li-Ion Batteries
    Battaglini, John
    ADVANCED MATERIALS & PROCESSES, 2010, 168 (07): : 26 - 27
  • [45] Li-ion batteries
    Battaglini, John
    Advanced Materials and Processes, 2010, 168 (07): : 26 - 27
  • [46] LI-ION BATTERIES
    不详
    ELECTRONICS WORLD, 2016, 122 (1957): : 6 - 6
  • [47] Lithium-ion conduction in elastomeric binder in Li-ion batteries
    Mayumi Kaneko
    Masanobu Nakayama
    Masataka Wakihara
    Journal of Solid State Electrochemistry, 2007, 11 : 1071 - 1076
  • [48] In situ Raman analyses of electrode materials for Li-ion batteries
    Julien, Christian M.
    Mauger, Alain
    AIMS MATERIALS SCIENCE, 2018, 5 (04) : 650 - 698
  • [49] Metal dicarboxylates as anode materials for Li-ion batteries
    Teusner, Matthew
    Mata, Jitendra
    Johannessen, Bernt
    Stewart, Glen
    Cadogan, Sean
    Sharma, Neeraj
    MATERIALS ADVANCES, 2023, 4 (15): : 3224 - 3238
  • [50] Lithium iron oxide as alternative anode for Li-ion batteries
    Prosini, PP
    Carewska, M
    Loreti, S
    Minarini, C
    Passerini, S
    INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2000, 2 (04): : 365 - 370