Mechanical properties and biocompatibility characterization of 3D printed collagen type II/silk fibroin/hyaluronic acid scaffold

被引:0
|
作者
Gao, Lilan [1 ,2 ,3 ]
Li, Yali [1 ,2 ]
Liu, Gang [1 ,2 ]
Lin, Xianglong [1 ,2 ]
Tan, Yansong [1 ,2 ]
Liu, Jie [1 ,2 ]
Li, Ruixin [4 ]
Zhang, Chunqiu [1 ,2 ,3 ]
机构
[1] Tianjin Univ Technol, Sch Mech Engn, Tianjin Key Lab Adv Mechatron Syst Design & Intell, Tianjin, Peoples R China
[2] Tianjin Univ Technol, Natl Demonstrat Ctr Expt Mech & Elect Engn Educ, Tianjin, Peoples R China
[3] Just Med Equipment Tianjin Co Ltd, Tianjin Key Lab Bone Implant Interface Functionali, Tianjin, Peoples R China
[4] Nankai Univ, Tianjin Stomatol Hosp, Tianjin Key Lab Oral & Maxillofacial Funct Reconst, Affiliated Stomatol Hosp, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; silk fibroin; type II collagen; hyaluronic acid; cartilage tissue engineering scaffold; chondrocytes; CARTILAGE;
D O I
10.1080/09205063.2024.2411797
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Damage to articular cartilage is irreversible and its ability to heal is minimal. The development of articular cartilage in tissue engineering requires suitable biomaterials as scaffolds that provide a 3D natural microenvironment for the development and growth of articular cartilage. This study aims to investigate the applicability of a 3D printed CSH (collagen type II/silk fibroin/hyaluronic acid) scaffold for constructing cartilage tissue engineering. The results showed that the composite scaffold had a three-dimensional porous network structure with uniform pore sizes and good connectivity. The hydrophilicity of the composite scaffold was 1071.7 +/- 131.6%, the porosity was 85.12 +/- 1.6%, and the compressive elastic modulus was 36.54 +/- 2.28 kPa. The creep and stress relaxation constitutive models were also established, which could well describe the visco-elastic mechanical behavior of the scaffold. The biocompatibility experiments showed that the CSH scaffold was very suitable for the adhesion and proliferation of chondrocytes. Under dynamic compressive loading conditions, it was able to promote cell adhesion and proliferation on the scaffold surface. The 3D printed CSH scaffold is expected to be ideal for promoting articular cartilage regeneration.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold
    Singh, Sunpreet
    Singh, Gurminder
    Prakash, Chander
    Ramakrishna, Seeram
    Lamberti, Luciano
    Pruncu, Catalin, I
    POLYMER TESTING, 2020, 89
  • [42] 3D printed scaffold design for bone defects with improved mechanical and biological properties
    Fallah, Ali
    Altunbek, Mine
    Bartolo, Paulo
    Cooper, Glen
    Weightman, Andrew
    Blunn, Gordon
    Koc, Bahattin
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 134
  • [43] Silk fibroin/sericin 3D sponges: The effect of sericin on structural and biological properties of fibroin
    Siavashani, Abdollah Zakeri
    Mohammadi, Javad
    Rottmar, Markus
    Senturk, Berna
    Nourmohammadi, Jhamak
    Sadeghi, Behnam
    Huber, Lukas
    Maniura-Weber, Katharina
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 153 : 317 - 326
  • [44] DEVELOPMENT AND CHARACTERISATION OF A NOVEL 3D BIOPRINTED BIOMIMETIC COLLAGEN AND HYALURONIC ACID SCAFFOLD FOR THE REPAIR OF CARTILAGE DEFECTS
    O'Shea, Donagh
    Curtin, Caroline
    O'Brien, Fergal
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 389 - 390
  • [45] MECHANICAL PROPERTIES OF 3D PRINTED METALS
    Allameh, Seyed M.
    Harbin, Brianna
    Leininger, Bailey
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 10, 2019,
  • [46] Mechanical properties of 3D printed polymers
    Yahamed, Azem
    Ikonomov, Pavel
    Fleming, Paul D.
    Pekarovicova, Alexandra
    Gustafson, Peter
    Alden, Arz Qwam
    Alrafeek, Saif
    JOURNAL OF PRINT AND MEDIA TECHNOLOGY RESEARCH, 2016, 5 (04): : 273 - 289
  • [47] Three-Dimensional Printed Silk Fibroin/Hyaluronic Acid Scaffold with Functionalized Modification Results in Excellent Mechanical Strength and Efficient Endogenous Cell Recruitment for Articular Cartilage Regeneration
    Shi, Weili
    Zhang, Jiahao
    Gao, Zeyuan
    Hu, Fengyi
    Kong, Simin
    Hu, Xiaoqing
    Zhao, Fengyuan
    Ao, Yingfang
    Shao, Zhenxing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [48] Optimization and significance of fabrication parameters on the mechanical properties of 3D printed Chitosan/PLA scaffold
    Abifarin, Johnson Kehinde
    Prakash, Chander
    Singh, Sunpreet
    MATERIALS TODAY-PROCEEDINGS, 2022, 50 : 2018 - 2025
  • [49] Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes
    Cao, Xinyi
    Sun, Kexin
    Luo, Junyue
    Chen, Andi
    Wan, Qi
    Zhou, Hongyi
    Zhou, Hongbo
    Liu, Yuehua
    Chen, Xiaojing
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2025, 11 (02): : 710 - 729
  • [50] Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen
    Lamparelli, Erwin Pavel
    Casagranda, Veronica
    Pressato, Daniele
    Maffulli, Nicola
    Della Porta, Giovanna
    Bellini, Davide
    PHARMACEUTICS, 2022, 14 (09)