Nanoindentation analysis of transcrystalline layers in model carbon fiber-reinforced PEEK composite

被引:0
|
作者
Vanpee, Sophie [1 ,2 ]
Nysten, Bernard [2 ]
Chevalier, Jeremy [3 ]
Pardoen, Thomas [1 ,4 ]
机构
[1] UCLouvain, Inst Mech Mat & Civil Engn iMMC, Pl St Barbe 2, B-1348 Louvain La Neuve, Belgium
[2] UCLouvain, Inst Condensed Matter & Nanosci IMCN, Croix Sud 1, B-1348 Louvain La Neuve, Belgium
[3] Syensqo, Mat Sci Applicat Ctr MSAC, Rue Fusee 98, B-1130 Brussels, Belgium
[4] WEL Res Inst, Ave Pasteur 6, B-1300 Wavre, Belgium
关键词
Semi-crystalline composite; Microstructure; Nanoindentation; Atomic force microscopy; ATOMIC-FORCE MICROSCOPE; INTERFACIAL PROPERTIES; ELASTIC-MODULUS; MECHANICAL CHARACTERIZATION; SEMICRYSTALLINE POLYMER; CRYSTAL TEXTURE; SHEAR-STRENGTH; POLYPROPYLENE; REGIONS; SURFACE;
D O I
10.1016/j.polymertesting.2025.108714
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanoindentation (NI) and atomic force microscopy (AFM) nanoindentation, coupled with polarized light microscopy (PLM), were used to determine the nano-/micromechanical behavior of the amorphous regions and individual crystalline structures, both spherulites and transcrystalline (TC) layers, in PEEK samples containing few carbon fibers. To this aim, thin model samples with a controlled thickness were manufactured to allow both microstructure characterization in transmission mode and indentation tests without substrate effects. Surface roughness of the model samples was carefully minimized to get reliable and low dispersion from indentation experiments. The artefacts and sources of uncertainty of performing indentation experiments on thin polymer films containing some fibers are also discussed. The AFM nanoindentation added value is the possibility of evaluating the mechanical behavior of crystalline structures at the nanoscale, for the determination of mechanical behavior heterogeneities at the intra-spherulitic and intra-transcrystalline scale.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] PROSPECTS OF FIBER-REINFORCED THERMOPLASTICS (PEEK)
    KEMPE, G
    COMPOSITES, 1987, 18 (05): : 410 - 410
  • [12] Interface layers of fiber reinforced composites with transcrystalline morphology
    Huang, Y
    Petermann, J
    POLYMER BULLETIN, 1996, 36 (04) : 517 - 524
  • [13] The Addition of Carbon Nanotube on the Tensile Properties of Carbon Fiber-Reinforced PEEK Composites
    Li, J.
    Zhang, L. Q.
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2009, 48 (11) : 1176 - 1179
  • [14] The bridged crack model for the analysis of fiber-reinforced composite materials
    Carpinteri, A
    Ferro, G
    Ventura, G
    ADVANCES IN COMPOSITE MATERIALS AND STRUCTURES VII, 2000, 9 : 301 - 310
  • [15] Effect and mechanism of thermal aging on mechanical properties of continuous carbon fiber-reinforced PEEK composite laminates
    Ma, Xiaolong
    Wen, Lihua
    Wang, Shiyu
    Lei, Ming
    Hou, Xiao
    POLYMER COMPOSITES, 2024, 45 (14) : 13256 - 13271
  • [16] FIBER BRIDGING OF A CARBON FIBER-REINFORCED CARBON MATRIX LAMINA COMPOSITE
    MIYAJIMA, T
    SAKAI, M
    JOURNAL OF MATERIALS RESEARCH, 1991, 6 (03) : 539 - 547
  • [17] Ultrasonic evaluation of polyether ether ketone and carbon fiber-reinforced PEEK
    David A. Fitch
    Brent K. Hoffmeister
    Javier de Ana
    Journal of Materials Science, 2010, 45 : 3768 - 3777
  • [18] Ultrasonic evaluation of polyether ether ketone and carbon fiber-reinforced PEEK
    Fitch, David A.
    Hoffmeister, Brent K.
    de Ana, Javier
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (14) : 3768 - 3777
  • [19] Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis
    Lee, Seung-Hwan
    Wang, Siqun
    Pharr, George M.
    Xu, Haitao
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (06) : 1517 - 1524
  • [20] A high-efficient model for interface debonding analysis of carbon fiber-reinforced polymer composite
    Lou, Xiaofei
    Han, Xuecheng
    Cai, Hongneng
    COMPOSITE INTERFACES, 2020, 27 (01) : 87 - 109