Unsupervised Change Point Detection in Multivariate Time Series

被引:0
|
作者
Wu, Daoping [1 ,2 ]
Gundimeda, Suhas [3 ]
Mou, Shaoshuai [4 ]
Quinn, Christopher J. [1 ]
机构
[1] Iowa State Univ, Dept Comp Sci, Ames, IA 50011 USA
[2] Uber Technol Inc, San Francisco, CA 94103 USA
[3] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Sch Aero & Astronaut, W Lafayette, IN USA
关键词
SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the challenging problem of unsupervised change point detection in multivariate time series when the number of change points is unknown. Our method eliminates the user's need for careful parameter tuning, enhancing its practicality and usability. Our approach identifies time series segments with similar empirically estimated distributions, coupled with a novel greedy algorithm guided by the minimum description length principle. We provide theoretical guarantees and, through experiments on synthetic and real-world data, provide empirical evidence for its improved performance in identifying meaningful change points in practical settings.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Robust Unsupervised Anomaly Detection With Variational Autoencoder in Multivariate Time Series Data
    Yokkampon, Umaporn
    Mowshowitz, Abbe
    Chumkamon, Sakmongkon
    Hayashi, Eiji
    IEEE ACCESS, 2022, 10 : 57835 - 57849
  • [32] Spatio-temporal nonstationarity analysis and change point detection in multivariate hydrological time-series
    Osmani, Mazyar
    Mahjouri, Najmeh
    Haghbin, Sara
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (09) : 2085 - 2103
  • [33] Trident: Change Point Detection for Multivariate Time Series via Dual-Level Attention Learning
    Duan, Ziyi
    Du, Haizhou
    Zheng, Yang
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 799 - 810
  • [34] Nonparametric sequential change-point detection for multivariate time series based on empirical distribution functions
    Kojadinovic, Ivan
    Verdier, Ghislain
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 773 - 829
  • [35] Detection of multiple change-points in multivariate time series
    Lavielle M.
    Teyssière G.
    Lithuanian Mathematical Journal, 2006, 46 (3) : 287 - 306
  • [36] Change points detection and parameter estimation for multivariate time series
    Wei Gao
    Haizhong Yang
    Lu Yang
    Soft Computing, 2020, 24 : 6395 - 6407
  • [37] Feature selection for change detection in multivariate time-series
    Botsch, Michael
    Nossek, Josef A.
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 590 - 597
  • [38] Change points detection and parameter estimation for multivariate time series
    Gao, Wei
    Yang, Haizhong
    Yang, Lu
    SOFT COMPUTING, 2020, 24 (09) : 6395 - 6407
  • [39] Unsupervised Anomaly and Change Detection With Multivariate Gaussianization
    Padron-Hidalgo, Jose A.
    Laparra, Valero
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] Nonparametric change point detection for periodic time series
    Guo, Lingzhe
    Modarres, Reza
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (03): : 518 - 534